fuse_utils.py 6.8 KB
Newer Older
X
XGZhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import paddle
import paddle.nn as nn
from . import utils


class Identity(nn.Layer):
    '''a layer to replace bn or relu layers'''

    def __init__(self, *args, **kwargs):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
def fuse_conv_bn(model):
    is_train = False
    if model.training:
        model.eval()
        is_train = True
    fuse_list = []
    tmp_pair = [None, None]
    for name, layer in model.named_sublayers():
        if isinstance(layer, nn.Conv2D):
            tmp_pair[0] = name
        if isinstance(layer, nn.BatchNorm2D):
            tmp_pair[1] = name

        if tmp_pair[0] and tmp_pair[1] and len(tmp_pair) == 2:
            fuse_list.append(tmp_pair)
            tmp_pair = [None, None]
    model = fuse_layers(model, fuse_list)
    if is_train:
        model.train()


X
XGZhang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
def fuse_layers(model, layers_to_fuse, inplace=False):
    '''
       fuse layers in layers_to_fuse

       Args:
           model(paddle.nn.Layer): The model to be fused.
           layers_to_fuse(list): The layers' names to be fused. For
               example,"fuse_list = [["conv1", "bn1"], ["conv2", "bn2"]]".
               A TypeError would be raised if "fuse" was set as
               True but "fuse_list" was None.
                                 Default: None.
           inplace(bool): Whether apply fusing to the input model.
                          Default: False.

       Return
           fused_model(paddle.nn.Layer): The fused model.
    '''
    if inplace == False:
        model = copy.deepcopy(model)
    for layers in layers_to_fuse:
        _fuse_layers(model, layers)
    return model


def _fuse_layers(model, layers_list):
    '''fuse all the layers in layers_list'''
    layer_list = []
    for layer_name in layers_list:
        parent_layer, sub_name = utils.find_parent_layer_and_sub_name(
            model, layer_name)
        layer_list.append(getattr(parent_layer, sub_name))
    new_layers = _fuse_func(layer_list)
    for i, item in enumerate(layers_list):
        parent_layer, sub_name = utils.find_parent_layer_and_sub_name(model,
                                                                      item)
        setattr(parent_layer, sub_name, new_layers[i])


def _fuse_func(layer_list):
    '''choose the fuser method and fuse layers'''
    types = tuple(type(m) for m in layer_list)
    fusion_method = types_to_fusion_method.get(types, None)
    new_layers = [None] * len(layer_list)
    fused_layer = fusion_method(*layer_list)
    for handle_id, pre_hook_fn in layer_list[0]._forward_pre_hooks.items():
        fused_layer.register_forward_pre_hook(pre_hook_fn)
        del layer_list[0]._forward_pre_hooks[handle_id]
    for handle_id, hook_fn in layer_list[-1]._forward_post_hooks.items():
        fused_layer.register_forward_post_hook(hook_fn)
        del layer_list[-1]._forward_post_hooks[handle_id]
    new_layers[0] = fused_layer
    for i in range(1, len(layer_list)):
        identity = Identity()
        identity.training = layer_list[0].training
        new_layers[i] = identity
    return new_layers


def _fuse_conv_bn(conv, bn):
    '''fuse conv and bn for train or eval'''
    assert(conv.training == bn.training),\
        "Conv and BN both must be in the same mode (train or eval)."
    if conv.training:
        assert bn._num_features == conv._out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
        raise NotImplementedError
    else:
        return _fuse_conv_bn_eval(conv, bn)


def _fuse_conv_bn_eval(conv, bn):
    '''fuse conv and bn for eval'''
    assert (not (conv.training or bn.training)), "Fusion only for eval!"
    fused_conv = copy.deepcopy(conv)

    fused_weight, fused_bias = _fuse_conv_bn_weights(
        fused_conv.weight, fused_conv.bias, bn._mean, bn._variance, bn._epsilon,
        bn.weight, bn.bias)
    fused_conv.weight.set_value(fused_weight)
    if fused_conv.bias is None:
        fused_conv.bias = paddle.create_parameter(
            shape=[fused_conv._out_channels], is_bias=True, dtype=bn.bias.dtype)
    fused_conv.bias.set_value(fused_bias)
    return fused_conv


def _fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
    '''fuse weights and bias of conv and bn'''
    if conv_b is None:
        conv_b = paddle.zeros_like(bn_rm)
    if bn_w is None:
        bn_w = paddle.ones_like(bn_rm)
    if bn_b is None:
        bn_b = paddle.zeros_like(bn_rm)
    bn_var_rsqrt = paddle.rsqrt(bn_rv + bn_eps)
    conv_w = conv_w * \
        (bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1))
    conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b
    return conv_w, conv_b


def _fuse_linear_bn(linear, bn):
    '''fuse linear and bn'''
    assert (linear.training == bn.training),\
        "Linear and BN both must be in the same mode (train or eval)."
    if linear.training:
        assert bn._num_features == linear.weight.shape[
            1], 'Output channel of Linear must match num_features of BatchNorm'
        raise NotImplementedError
    else:
        return _fuse_linear_bn_eval(linear, bn)


def _fuse_linear_bn_eval(linear, bn):
    '''fuse linear and bn for eval'''
    assert (not (linear.training or bn.training)), "Fusion only for eval!"
    fused_linear = copy.deepcopy(linear)

    fused_weight, fused_bias = _fuse_linear_bn_weights(
        fused_linear.weight, fused_linear.bias, bn._mean, bn._variance,
        bn._epsilon, bn.weight, bn.bias)
    fused_linear.weight.set_value(fused_weight)
    if fused_linear.bias is None:
        fused_linear.bias = paddle.create_parameter(
            shape=[fused_linear.weight.shape[1]],
            is_bias=True,
            dtype=bn.bias.dtype)
    fused_linear.bias.set_value(fused_bias)
    return fused_linear


def _fuse_linear_bn_weights(linear_w, linear_b, bn_rm, bn_rv, bn_eps, bn_w,
                            bn_b):
    '''fuse weights and bias of linear and bn'''
    if linear_b is None:
        linear_b = paddle.zeros_like(bn_rm)
    bn_scale = bn_w * paddle.rsqrt(bn_rv + bn_eps)
    fused_w = linear_w * bn_scale.unsqueeze(-1)
    fused_b = (linear_b - bn_rm) * bn_scale + bn_b
    return fused_w, fused_b


types_to_fusion_method = {
    (nn.Conv2D, nn.BatchNorm2D): _fuse_conv_bn,
    (nn.Linear, nn.BatchNorm1D): _fuse_linear_bn,
}