lu_kernel_impl.h 19.0 KB
Newer Older
L
Lin Manhui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/elementwise_add_kernel.h"
#include "paddle/phi/kernels/elementwise_subtract_kernel.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"
#include "paddle/phi/kernels/funcs/tril_triu_compute.h"
#include "paddle/phi/kernels/impl/set_value_kernel_impl.h"

namespace phi {

template <typename T>
using SubFunctor = phi::funcs::SubtractFunctor<T>;

template <typename Context, typename T, size_t D>
void SetValueCompute(const Context& dev_ctx,
                     DenseTensor* in,
                     DenseTensor* value_tensor,
                     DenseTensor* out,
                     const std::vector<int64_t>& axes,
                     std::vector<int64_t>* starts,
                     std::vector<int64_t>* ends,
                     const std::vector<int64_t>& shape) {
  std::vector<int64_t> steps = {1, 1};
  std::vector<int64_t> decrease_axes = {};
  std::vector<int64_t> none_axes = {};

  auto dtype = in->dtype();

  auto in_dims = in->dims();
  phi::funcs::CheckAndUpdateSliceAttrs<int64_t>(
      in_dims, axes, starts, ends, &steps);
  auto slice_dims =
      phi::funcs::GetSliceDims(in_dims, axes, *starts, *ends, &steps);
  auto decrease_slice_dims =
      phi::funcs::GetDecreasedDims(slice_dims, decrease_axes);

  auto slice_dims_for_assign = decrease_slice_dims;
  if (!none_axes.empty()) {
    std::vector<int64_t> slice_dims_with_none;

    size_t none_axes_cur = 0, decrease_axes_cur = 0;
    for (int i = 0; i < slice_dims.size(); ++i) {
      while (none_axes_cur < none_axes.size() &&
             none_axes[none_axes_cur] <= i) {
        slice_dims_with_none.push_back(1);
        none_axes_cur++;
      }
      if (decrease_axes_cur < decrease_axes.size() &&
          decrease_axes[decrease_axes_cur] == i) {
        decrease_axes_cur++;
      } else {
        slice_dims_with_none.push_back(slice_dims[i]);
      }
    }
    while (none_axes_cur < none_axes.size()) {
      slice_dims_with_none.push_back(1);
      none_axes_cur++;
    }

    slice_dims_for_assign = phi::make_ddim(slice_dims_with_none);
  }

  auto place = dev_ctx.GetPlace();
  auto& eigen_place = *dev_ctx.eigen_device();

  // Here copy data from input to avoid data loss at PE and Graph level.
  // TODO(liym27): Speed up in the future version.
  // - Q: Why don't call ShareDataWith to speed up?
  // - A: Because it's not supported to ShareDataWith on OP's input and output
  // https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP
  // - Q: Why don't delete Input, after all, the input and output are the same
  // Tensor at program level?
  // - A: If deleting Input, the graph will be complex, such as there will
  // be two ops points to the output in graph: op1 -> output <- set_value.
  // In this case, we have to find a way to handle the running order of
  // set_value is what we want.
  phi::Copy(dev_ctx, *in, place, false, out);

  DenseTensor slice_tensor(dtype), pad_tensor(dtype);
  slice_tensor.Resize(slice_dims);
  dev_ctx.template Alloc<T>(&slice_tensor);
  pad_tensor.Resize(in_dims);
  dev_ctx.template Alloc<T>(&pad_tensor);

  auto pad_e = EigenTensor<T, D>::From(pad_tensor, in_dims);
  auto out_e = EigenTensor<T, D>::From(*out);
  auto slice_e = EigenTensor<T, D>::From(slice_tensor, slice_dims);

  // Step 1: Set the value of out at `_index` to zero
  slice_e.device(eigen_place) = slice_e.constant(T(0));

  auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

  for (size_t i = 0; i < D; ++i) {
    starts_indices[i] = 0;
    ends_indices[i] = slice_dims[i];
    strides_indices[i] = 1;
  }
  for (size_t i = 0; i < axes.size(); i++) {
    int axis_index = axes[i];
    starts_indices[axis_index] = (*starts)[i];
    ends_indices[axis_index] = (*ends)[i];
    strides_indices[axis_index] = steps[i];
    if ((*starts)[i] ==
        (*ends)[i]) {  // slice is empty, data will not be changed
      return;
    }
  }

  out_e.stridedSlice(starts_indices, ends_indices, strides_indices)
      .device(eigen_place) = slice_e;

  // Step 2: Set a tensor with the same shape as out tensor. And its data at
  // '_index' is the same as value_tensor, and data out of '_index' to zero

  // - Step 2.1 Set slice tensor with value

  // NOTE(liym27): [ Why resize slice_tensor here? ]
  // A: When do broadcasting on slice_tensor and value_tensor, the shape of
  // slice_tensor should be decreased dims.
  // e.g.
  //  x[:,0] = value_tensor
  // x's shape = [3, 4], value_tensor's shape = [3]
  // We get slice_dims = [3, 1],  decrease_slice_dims = [3]
  // If do broadcasting on Tensor with shape [3, 1] and [3], the result's
  // shape is [3, 3], which cross the border;
  // If do broadcasting on Tensor with shape [3] and [3], the result's shape
  // is [3], which is right.

  slice_tensor.Resize(slice_dims_for_assign);
  if (value_tensor != nullptr) {
    CheckIsDimsMatch(slice_dims_for_assign, value_tensor->dims());
156 157
    phi::funcs::ElementwiseCompute<SubFunctor<T>, T>(
        dev_ctx, slice_tensor, *value_tensor, SubFunctor<T>(), &slice_tensor);
L
Lin Manhui 已提交
158 159 160 161 162 163 164
  } else {
    DenseTensor value_t(dtype);
    auto value_dims = phi::make_ddim(shape);
    CheckIsDimsMatch(slice_dims_for_assign, value_dims);

    value_t.Resize(value_dims);
    dev_ctx.template Alloc<T>(&value_t);
165 166
    phi::funcs::ElementwiseCompute<SubFunctor<T>, T>(
        dev_ctx, slice_tensor, value_t, SubFunctor<T>(), &slice_tensor);
L
Lin Manhui 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
  }
  slice_tensor.Resize(slice_dims);

  // - Step 2.2 Pad slice tensor with 0
  pad_e.device(eigen_place) = pad_e.constant(T(0));
  pad_e.stridedSlice(starts_indices, ends_indices, strides_indices)
      .device(eigen_place) = slice_e;

  // Step 3: Set out tensor with value_tensor
  out_e.device(eigen_place) = out_e - pad_e;
}

template <typename Context, typename T>
void SetValueCompute_dispatch(const Context& dev_ctx,
                              DenseTensor* in,
                              DenseTensor* value_tensor,
                              DenseTensor* out,
                              const std::vector<int64_t>& axes,
                              std::vector<int64_t>* starts,
                              std::vector<int64_t>* ends,
                              const std::vector<int64_t>& shape,
                              int rank) {
  switch (rank) {
    case 1:
      SetValueCompute<Context, T, 1>(
          dev_ctx, in, value_tensor, out, axes, starts, ends, shape);
      break;
    case 2:
      SetValueCompute<Context, T, 2>(
          dev_ctx, in, value_tensor, out, axes, starts, ends, shape);
      break;
    case 3:
      SetValueCompute<Context, T, 3>(
          dev_ctx, in, value_tensor, out, axes, starts, ends, shape);
      break;
    case 4:
      SetValueCompute<Context, T, 4>(
          dev_ctx, in, value_tensor, out, axes, starts, ends, shape);
      break;
    case 5:
      SetValueCompute<Context, T, 5>(
          dev_ctx, in, value_tensor, out, axes, starts, ends, shape);
      break;
    case 6:
      SetValueCompute<Context, T, 6>(
          dev_ctx, in, value_tensor, out, axes, starts, ends, shape);
      break;
    default:
      PADDLE_THROW(phi::errors::InvalidArgument(
          "The rank of input should be less than 7, but received %d.", rank));
  }
}

template <typename Context, typename T>
void Tensor_Conj(const Context& dev_ctx,
                 const DenseTensor& tensor,
                 DenseTensor* out) {
  out->Resize(tensor.dims());
  phi::funcs::ForRange<Context> out_for_range(dev_ctx, tensor.numel());
  dev_ctx.template Alloc<T>(out);
  phi::funcs::ConjFunctor<T> out_functor(
      tensor.data<T>(), tensor.numel(), out->data<T>());
  out_for_range(out_functor);
}

template <typename Context, typename T>
void Tensor_Add(const Context& dev_ctx,
                const DenseTensor& src1,
                const DenseTensor& src2,
                DenseTensor* out) {
  out->Resize(src1.dims());
  dev_ctx.template Alloc<T>(out);

  phi::AddRawKernel<T, Context>(dev_ctx, src1, src2, -1, out);
}

template <typename Context, typename T>
void Tensor_Sub(const Context& dev_ctx,
                const DenseTensor& src1,
                const DenseTensor& src2,
                DenseTensor* out) {
  out->Resize(src1.dims());
  dev_ctx.template Alloc<T>(out);

  phi::SubtractRawKernel<T, Context>(dev_ctx, src1, src2, -1, out);
}

template <typename Context, typename T, size_t D>
void SliceCompute(const Context& dev_ctx,
                  const DenseTensor* in,
                  DenseTensor* out,
                  const std::vector<int>& axes_int,
                  const std::vector<int>& starts_int,
                  const std::vector<int>& ends_int) {
  std::vector<int64_t> axes(axes_int.begin(), axes_int.end());
  std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
  std::vector<int64_t> ends(ends_int.begin(), ends_int.end());

  std::vector<int> decrease_axis = {};
  std::vector<int> infer_flags = {};

  PADDLE_ENFORCE_EQ(
      starts.size(),
      axes.size(),
      phi::errors::InvalidArgument(
          "The size of starts must be equal to the size of axes."));
  PADDLE_ENFORCE_EQ(ends.size(),
                    axes.size(),
                    phi::errors::InvalidArgument(
                        "The size of ends must be equal to the size of axes."));

  // Step 2: Compute output

  auto in_dims = in->dims();
  auto out_dims = out->dims();
  auto slice_dims = out_dims;

  // 2.1 Infer output dims
  for (size_t i = 0; i < axes.size(); ++i) {
    // when start == -1 && end == start+1
    if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        ends[i] = in_dims[axes[i]];
      }
    }
  }

  phi::funcs::CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends);
  slice_dims = phi::funcs::GetSliceDims<int64_t>(
      in_dims, axes, starts, ends, nullptr, nullptr);
  out_dims = phi::funcs::GetDecreasedDims(slice_dims, decrease_axis);

  // 2.2 Get output
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();

  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = slice_dims[i];
  }
  for (size_t i = 0; i < axes.size(); ++i) {
    offsets[axes[i]] = starts[i];
  }

  out->Resize(slice_dims);
  dev_ctx.template Alloc<T>(out);

  auto in_t = EigenTensor<T, D>::From(*in, in_dims);
  auto out_t = EigenTensor<T, D>::From(*out, slice_dims);
  auto& eigen_place = *dev_ctx.eigen_device();

  if (in->numel() <= Eigen::NumTraits<int>::highest()) {
    // similar to tf.slice:
    // if element number less than INT_MAX, change the type of index to int
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = offsets[i];
      extents_32bit[i] = extents[i];
    }
    funcs::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place,
        To32BitIndex(out_t),
        To32BitIndex(in_t),
        offsets_32bit,
        extents_32bit);
  } else {
    funcs::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place, out_t, in_t, offsets, extents);
  }

  out->Resize(out_dims);
  dev_ctx.template Alloc<T>(out);
}

template <typename Context, typename T>
void Tensor_narrow(const Context& dev_ctx,
                   const DenseTensor* src,
                   DenseTensor* out,
                   int row_s,
                   int row_e,
                   int col_s,
                   int col_e) {
  auto rank = src->dims().size();
  std::vector<int> axes_int = {rank - 2, rank - 1};
  std::vector<int> starts_int = {row_s, col_s};
  std::vector<int> ends_int = {row_e, col_e};
  switch (rank) {
    case 1:
      SliceCompute<Context, T, 1>(
          dev_ctx, src, out, axes_int, starts_int, ends_int);
      break;
    case 2:
      SliceCompute<Context, T, 2>(
          dev_ctx, src, out, axes_int, starts_int, ends_int);
      break;
    case 3:
      SliceCompute<Context, T, 3>(
          dev_ctx, src, out, axes_int, starts_int, ends_int);
      break;
    case 4:
      SliceCompute<Context, T, 4>(
          dev_ctx, src, out, axes_int, starts_int, ends_int);
      break;
    case 5:
      SliceCompute<Context, T, 5>(
          dev_ctx, src, out, axes_int, starts_int, ends_int);
      break;
    case 6:
      SliceCompute<Context, T, 6>(
          dev_ctx, src, out, axes_int, starts_int, ends_int);
      break;
    default:
      PADDLE_THROW(phi::errors::InvalidArgument(
          "The rank of input should be less than 7, but received %d.", rank));
  }
}

template <typename Context>
void arange(const Context& dev_ctx,
            DenseTensor* tmp,
            int w,
            int batchsize = 1,
            int h = 1) {
  tmp->Resize(phi::make_ddim({batchsize * w}));
  dev_ctx.template HostAlloc<int32_t>(tmp);
  auto tmpdata = tmp->data<int32_t>();
  for (int b = 0; b < batchsize; b++) {
    for (int i = 0; i < w; i++) {
      tmpdata[b * w + i] = static_cast<int32_t>(b * h + i);
    }
  }
}

template <typename T>
struct OneFunctor {
  OneFunctor(T* output, int* idtptr, int w, int dim)
      : output_(output), idtptr_(idtptr), w_(w), dim_(dim) {}

  HOSTDEVICE void operator()(size_t idx) const {
    output_[w_ * idtptr_[idx] + idx % dim_] = static_cast<T>(1);
  }

  T* output_;
  int* idtptr_;
  int w_;
  int dim_;
};

template <typename Context, typename T>
void LU_Unpack(const Context& dev_ctx,
               const DenseTensor* LU,
               DenseTensor* L,
               DenseTensor* U) {
  const auto udims = LU->dims();
  L->Resize(udims);
  U->Resize(udims);
  const auto H = udims[udims.size() - 2];
  const auto W = udims[udims.size() - 1];
  dev_ctx.template Alloc<T>(L);
  auto L_dataptr = L->data<T>();
  phi::funcs::ForRange<Context> x_for_range(dev_ctx, LU->numel());
  phi::funcs::TrilTriuCompute<T> tril_computer(
      LU->data<T>(), -1, true, H, W, L_dataptr);
  x_for_range(tril_computer);

  dev_ctx.template Alloc<T>(U);
  phi::funcs::TrilTriuCompute<T> triu_computer(
      LU->data<T>(), 0, false, H, W, U->data<T>());
  x_for_range(triu_computer);

  // set L's diagonal 1
  auto dim = std::min(H, W);
  DenseTensor rowtensor, rt_dev;
  auto batchsize = product(phi::slice_ddim(udims, 0, udims.size() - 2));
442 443 444 445

  // if udims is [0, ..., H, W], it should be 0
  if (udims.size() == 2) batchsize = std::max(static_cast<int>(batchsize), 1);

L
Lin Manhui 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  arange<Context>(dev_ctx, &rowtensor, dim, batchsize, H);
  auto idtptr = rowtensor.data<int32_t>();
  if (phi::AllocationType::GPU == dev_ctx.GetPlace().GetType()) {
    phi::Copy(dev_ctx, rowtensor, dev_ctx.GetPlace(), false, &rt_dev);
    idtptr = rt_dev.data<int32_t>();
  }

  phi::funcs::ForRange<Context> for_range(dev_ctx, rowtensor.numel());
  OneFunctor<T> functor(L_dataptr, idtptr, W, dim);
  for_range(functor);
}

template <typename Context, typename T>
void scatterpivot(
    const Context& dev_ctx, T* out_data, DenseTensor* idlst, int w, int dim) {
  DenseTensor idlst_tmp;
  idlst_tmp.Resize(idlst->dims());
  dev_ctx.template Alloc<int32_t>(&idlst_tmp);
  phi::Copy(dev_ctx, *idlst, dev_ctx.GetPlace(), false, &idlst_tmp);
  auto idtptr = idlst_tmp.data<int32_t>();

  phi::funcs::ForRange<Context> for_range(dev_ctx, idlst_tmp.numel());
  OneFunctor<T> functor(out_data, idtptr, w, dim);
  for_range(functor);
}

template <typename Context, typename T>
void Unpack_Pivot(const Context& dev_ctx,
                  const DenseTensor& Pivot,
                  DenseTensor* P,
                  int h,
                  int w) {
  auto dims = Pivot.dims();
  auto Pdimvec = vectorize(dims);
  auto prank = Pdimvec.size();
  auto Pnum = dims[prank - 1];
  DenseTensor Pivot_cpu;
  phi::CPUPlace cpu;
  phi::Copy(dev_ctx, Pivot, cpu, false, &Pivot_cpu);
  auto pdataptr = Pivot_cpu.data<int32_t>();
  Pdimvec[prank - 1] = h;
  Pdimvec.emplace_back(h);
  auto Pdim = phi::make_ddim(Pdimvec);
  P->Resize(Pdim);
  dev_ctx.template Alloc<T>(P);
  auto pdata = P->data<T>();
  phi::funcs::SetConstant<Context, T> setter;
  setter(dev_ctx, P, static_cast<T>(0));

  auto batchsize = product(phi::slice_ddim(dims, 0, prank - 1));
496 497
  if (prank == 1) batchsize = std::max(static_cast<int>(batchsize), 1);

L
Lin Manhui 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  DenseTensor idt;
  for (int i = 0; i < batchsize; i++) {
    arange<Context>(dev_ctx, &idt, h);
    auto idlst = idt.data<int32_t>();
    for (int j = 0; j < Pnum; j++) {
      if (idlst[pdataptr[i * Pnum + j] - 1] == idlst[j]) continue;
      auto temp = idlst[j];
      idlst[j] = idlst[pdataptr[i * Pnum + j] - 1];
      idlst[pdataptr[i * Pnum + j] - 1] = temp;
    }
    scatterpivot(dev_ctx, &(pdata[i * h * h]), &idt, h, h);
  }
}

template <typename Context, typename T>
DenseTensor Transpose2DTo6D(const Context& dev_ctx, const DenseTensor& x) {
  // transpose the last two dimision
  DenseTensor ret;
  auto x_dim = x.dims();
  auto x_vec = phi::vectorize<int>(x_dim);
  int rank = x_vec.size();
519 520 521 522 523 524 525 526

  for (int i = 0; i < x_dim.size(); i++) {
    PADDLE_ENFORCE_LT(0,
                      x_dim[i],
                      errors::InvalidArgument(
                          "The dims of Input(X) should be greater than 0."));
  }

L
Lin Manhui 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
  std::swap(x_vec[rank - 1], x_vec[rank - 2]);
  std::vector<int> out_shape = x_vec;
  std::vector<int> axis(rank);
  for (int i = 0; i < rank; ++i) {
    axis[i] = i;
  }
  std::swap(axis[rank - 1], axis[rank - 2]);
  ret.Resize(phi::make_ddim(x_vec));
  dev_ctx.template Alloc<T>(&ret);
  switch (rank) {
    case 2: {
      phi::funcs::Transpose<Context, T, 2> trans;
      trans(dev_ctx, x, &ret, axis);
      break;
    }
    case 3: {
      phi::funcs::Transpose<Context, T, 3> trans;
      trans(dev_ctx, x, &ret, axis);
      break;
    }
    case 4: {
      phi::funcs::Transpose<Context, T, 4> trans;
      trans(dev_ctx, x, &ret, axis);
      break;
    }
    case 5: {
      phi::funcs::Transpose<Context, T, 5> trans;
      trans(dev_ctx, x, &ret, axis);
      break;
    }
    case 6: {
      phi::funcs::Transpose<Context, T, 6> trans;
      trans(dev_ctx, x, &ret, axis);
      break;
    }
    default: {
      PADDLE_THROW(phi::errors::InvalidArgument(
          "Invalid Rank number, "
          "currently only support rank between 2~6"));
    }
  }
  return ret;
}

}  // namespace phi