elementwise_grad_kernel.cu 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/elementwise_grad_kernel.h"

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
21
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/core/tensor_utils.h"
23
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
24
#include "paddle/phi/kernels/gpu/elementwise_grad.h"
25
#include "paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h"
26

27
namespace phi {
28

29 30 31 32 33 34 35 36
template <typename T, typename Context>
void MaximumGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const DenseTensor& dout,
                       DenseTensor* dx,
                       DenseTensor* dy) {
  const auto place = dev_ctx.GetPlace();
37
  int axis = -1;
38 39
  if (dx != nullptr && dy != nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
40 41 42 43 44 45 46 47
    GetGradXAndYOut<T>(dev_ctx,
                       place,
                       axis,
                       ins,
                       dout,
                       dx,
                       dy,
                       funcs::MaxGradXYFunctor<T, T>());
48 49
  } else if (dx != nullptr && dy == nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
50
    GetGradXOrYOut<T>(
51 52 53
        dev_ctx, place, axis, ins, dout, dx, funcs::MaxGradXFunctor<T>());
  } else if (dy != nullptr && dx == nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
54
    GetGradXOrYOut<T>(
55 56 57 58 59 60 61 62 63 64 65 66
        dev_ctx, place, axis, ins, dout, dy, funcs::MaxGradYFunctor<T>());
  }
}

template <typename T, typename Context>
void MinimumGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const DenseTensor& dout,
                       DenseTensor* dx,
                       DenseTensor* dy) {
  const auto place = dev_ctx.GetPlace();
67
  int axis = -1;
68 69
  if (dx != nullptr && dy != nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
70 71 72 73 74 75 76 77
    GetGradXAndYOut<T>(dev_ctx,
                       place,
                       axis,
                       ins,
                       dout,
                       dx,
                       dy,
                       funcs::MinGradXYFunctor<T, T>());
78 79
  } else if (dx != nullptr && dy == nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
80
    GetGradXOrYOut<T>(
81 82 83
        dev_ctx, place, axis, ins, dout, dx, funcs::MinGradXFunctor<T>());
  } else if (dy != nullptr && dx == nullptr) {
    std::vector<const DenseTensor*> ins = {&x, &y, &dout};
84
    GetGradXOrYOut<T>(
85 86 87
        dev_ctx, place, axis, ins, dout, dy, funcs::MinGradYFunctor<T>());
  }
}
88
}  // namespace phi
89

Y
YuanRisheng 已提交
90
PD_REGISTER_KERNEL(fmax_grad,
91 92 93 94 95 96
                   GPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMaxGradKernel,
                   float,
                   double,
                   int,
97
                   phi::dtype::float16,
98
                   phi::dtype::bfloat16,
99 100
                   int64_t) {}

Y
YuanRisheng 已提交
101
PD_REGISTER_KERNEL(fmin_grad,
102 103 104 105 106 107
                   GPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMinGradKernel,
                   float,
                   double,
                   int,
108
                   phi::dtype::float16,
109
                   phi::dtype::bfloat16,
110
                   int64_t) {}
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

PD_REGISTER_KERNEL(maximum_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::MaximumGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(minimum_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::MinimumGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
133

134
PD_REGISTER_KERNEL(heaviside_grad,
135 136
                   GPU,
                   ALL_LAYOUT,
137
                   phi::HeavisideGradKernel,
138 139 140
                   float,
                   double,
                   int,
141
                   phi::dtype::float16,
142 143
                   int64_t) {}

144 145 146 147 148 149 150
PD_REGISTER_KERNEL(elementwise_pow_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ElementwisePowGradKernel,
                   float,
                   double,
                   int,
151
                   phi::dtype::float16,
152
                   phi::dtype::bfloat16,
153
                   int64_t) {}