layer_norm_kernel.cc 4.8 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/layer_norm_kernel.h"
16

H
hong 已提交
17 18 19 20
#include "paddle/phi/kernels/cpu/elementwise.h"
#include "paddle/phi/kernels/funcs/layer_norm_util.h"
#if !defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__)
21
#include "paddle/phi/kernels/funcs/jit/kernels.h"
H
hong 已提交
22 23 24 25 26 27 28 29 30 31 32 33
#endif
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Context>
void LayerNormKernel(const Context& dev_ctx,
                     const DenseTensor& x,
34 35
                     const paddle::optional<DenseTensor>& scale_opt,
                     const paddle::optional<DenseTensor>& bias_opt,
H
hong 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
                     float epsilon,
                     int begin_norm_axis,
                     DenseTensor* y,
                     DenseTensor* mean,
                     DenseTensor* var) {
  const auto x_dims = x.dims();
  auto* scale = scale_opt.get_ptr();
  auto* bias = bias_opt.get_ptr();

  dev_ctx.template Alloc<T>(y);
  dev_ctx.template Alloc<T>(mean);
  dev_ctx.template Alloc<T>(var);

  auto matrix_dim = phi::flatten_to_2d(x_dims, begin_norm_axis);
  int left = static_cast<int>(matrix_dim[0]);
  int right = static_cast<int>(matrix_dim[1]);
  DDim matrix_shape({left, right});

  auto x_tmp = x;
  x_tmp.Resize(matrix_shape);
  DenseTensor out;
  out.ShareDataWith(*y);
  out.Resize(matrix_shape);

#if defined(PADDLE_WITH_CUDA) || defined(_WIN32) || defined(__APPLE__) || \
    defined(__OSX__)

  funcs::RowwiseMean2D<phi::CPUContext, T> row_mean(left, right, dev_ctx);

  // get mean
  row_mean(dev_ctx, x_tmp, mean);

  // get variance

70 71
  phi::funcs::ElementwiseCompute<funcs::SubAndSquareFunctor<T>, T>(
      dev_ctx, x_tmp, *mean, funcs::SubAndSquareFunctor<T>(), &out, 0);
H
hong 已提交
72 73 74 75

  row_mean(dev_ctx, out, var);

  // get x_norm
76 77
  phi::funcs::ElementwiseCompute<funcs::SubtractFunctor<T>, T>(
      dev_ctx, x_tmp, *mean, funcs::SubtractFunctor<T>(), &out, 0);
H
hong 已提交
78

79
  phi::funcs::ElementwiseCompute<funcs::DivAndSqrtFunctor<T>, T>(
H
hong 已提交
80 81 82 83
      dev_ctx,
      out,
      *var,
      funcs::DivAndSqrtFunctor<T>(static_cast<T>(epsilon)),
84 85
      &out,
      0);
H
hong 已提交
86 87

  if (scale) {
88 89
    phi::funcs::ElementwiseCompute<funcs::MultiplyFunctor<T>, T>(
        dev_ctx, out, *scale, funcs::MultiplyFunctor<T>(), &out, 1);
H
hong 已提交
90 91
  }
  if (bias) {
92 93
    phi::funcs::ElementwiseCompute<funcs::AddFunctor<T>, T>(
        dev_ctx, out, *bias, funcs::AddFunctor<T>(), &out, 1);
H
hong 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  }
#else
  PADDLE_ENFORCE_EQ(mean->numel(),
                    left,
                    phi::errors::InvalidArgument(
                        "mean's length (%d) is not equal with expected (%d).",
                        mean->numel(),
                        left));
  PADDLE_ENFORCE_EQ(var->numel(),
                    left,
                    phi::errors::InvalidArgument(
                        "var's length (%d) is not equal with expected (%d).",
                        var->numel(),
                        left));
  if (scale) {
    PADDLE_ENFORCE_EQ(
        scale->numel(),
        right,
        phi::errors::InvalidArgument(
            "scale's length (%d) is not equal with expected (%d).",
            scale->numel(),
            right));
  }
  if (bias) {
    PADDLE_ENFORCE_EQ(bias->numel(),
                      right,
                      phi::errors::InvalidArgument(
                          "bias's length (%d) is not equal with expected (%d).",
                          bias->numel(),
                          right));
  }

126 127 128
  auto ker =
      phi::jit::KernelFuncs<phi::jit::LayerNormTuple<T>, phi::CPUPlace>::Cache()
          .At(right);
H
hong 已提交
129 130 131 132 133 134 135
  ker(x_tmp.data<T>(),
      out.data<T>(),
      mean->data<T>(),
      var->data<T>(),
      scale ? scale->data<T>() : nullptr,
      bias ? bias->data<T>() : nullptr,
      static_cast<int>(left),
136
      static_cast<float>(epsilon),
H
hong 已提交
137 138 139 140 141 142 143
      right);
#endif
}

}  // namespace phi

PD_REGISTER_KERNEL(
144 145 146 147
    layer_norm, CPU, ALL_LAYOUT, phi::LayerNormKernel, float, double) {
  kernel->OutputAt(1).SetDataType(phi::DataType::UNDEFINED);
  kernel->OutputAt(2).SetDataType(phi::DataType::UNDEFINED);
}