DeConv3DLayer.cpp 7.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduoZH 已提交
15
#include "DeConv3DLayer.h"
C
chengduoZH 已提交
16 17 18 19 20 21 22 23
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

REGISTER_LAYER(deconv3d, DeConv3DLayer);

bool DeConv3DLayer::init(const LayerMap &layerMap,
C
chengduoZH 已提交
24
                         const ParameterMap &parameterMap) {
C
chengduoZH 已提交
25 26 27 28 29 30
  if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
  // for Deconv, the dimension of Kernel is
  // channel * output * depth * height * weigth
  // Matrix storage format: (output * depth * height * weigth) x  channel
  for (int index = 0; index < config_.inputs().size(); ++index) {
    M_.push_back(filterChannels_[index]);
C
chengduoZH 已提交
31
    K_.push_back(filterPixels_[index] * (numFilters_ / groups_[index]));
C
chengduoZH 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

    // create a new weight
    size_t height, width;
    height = filterPixels_[index] * numFilters_;
    width = filterChannels_[index];
    CHECK_EQ(parameters_[index]->getSize(), width * height);
    Weight *w = new Weight(height, width, parameters_[index]);
    weights_.emplace_back(w);
  }
  if (biasParameter_.get()) {
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
          std::unique_ptr<Weight>(new Weight(1, numFilters_, biasParameter_));
    } else {
      biases_ =
          std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
    }
C
chengduoZH 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
  }
  return true;
}

size_t DeConv3DLayer::getSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  // imgSizeH_.clear();
  // imgSizeW_.clear();
  // imgSizeD_.clear();
  outputH_.clear();
  outputW_.clear();
  outputD_.clear();
  N_.clear();
C
chengduoZH 已提交
63
  NOut_.clear();
C
chengduoZH 已提交
64 65 66 67 68
  size_t layerSize = 0;
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    // imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
    // imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
    // imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
C
chengduoZH 已提交
69 70 71 72 73 74 75
    outputW_.push_back(
        imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
    outputH_.push_back(imageSize(
        imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
    outputD_.push_back(imageSize(
        imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
    NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
C
chengduoZH 已提交
76 77
    N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
    CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
C
chengduoZH 已提交
78
    layerSize += NOut_[i] * numFilters_;
C
chengduoZH 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  }
  getOutput().setFrameHeight(outputH_[0]);
  getOutput().setFrameWidth(outputW_[0]);
  getOutput().setFrameDepth(outputD_[0]);
  return layerSize;
}

void DeConv3DLayer::forward(PassType passType) {
  Layer::forward(passType);
  int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
  int outWidth = getSize();
  resetOutput(batchSize, outWidth);
  const MatrixPtr outMat = getOutputValue();

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
C
chengduoZH 已提交
95
    const MatrixPtr &inMat = getInputValue(i);
C
chengduoZH 已提交
96 97 98 99
    int M = M_[i];
    int N = N_[i];
    int K = K_[i];
    MatrixPtr wMat = weights_[i]->getW();
C
chengduoZH 已提交
100
    Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
C
chengduoZH 已提交
101
    for (int n = 0; n < batchSize; ++n) {
C
chengduoZH 已提交
102 103 104 105 106 107 108
      real *inData = inMat->getData() + n * inMat->getStride();
      for (int g = 0; g < groups_[i]; ++g) {
        MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
        MatrixPtr wMatSub = wMat->subMatrix(g * K, K);
        MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
        colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0);
        inData += M * N;
C
chengduoZH 已提交
109
      }
C
chengduoZH 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
      colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(),
                       numFilters_,
                       outputD_[i],
                       outputH_[i],
                       outputW_[i],
                       filterSizeZ_[i],
                       filterSizeY_[i],
                       filterSize_[i],
                       strideZ_[i],
                       strideY_[i],
                       stride_[i],
                       paddingZ_[i],
                       paddingY_[i],
                       padding_[i],
                       1.0,
                       1.0);
C
chengduoZH 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    }
  }
  if (nullptr != this->biasParameter_) {
    REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
    this->addBias();
  }
  forwardActivation();
}

void DeConv3DLayer::backward(const UpdateCallback &callback) {
  backwardActivation();
  int batchSize = getOutputGrad()->getHeight();
  if (biases_ && biases_->getWGrad()) {
    bpropBiases();
    biases_->getParameterPtr()->incUpdate(callback);
  }
C
chengduoZH 已提交
142 143 144 145 146
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    if (weights_[i]->getWGrad() || this->needGradient_) {
      int M = M_[i];
      int N = N_[i];
      int K = K_[i];
C
chengduoZH 已提交
147
      REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
C
chengduoZH 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
      Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
      const MatrixPtr &inMat = getInputValue(i);
      for (int n = 0; n < batchSize; ++n) {
        colBuf_->vol2Col(
            getOutputGrad()->getData() + n * getOutputGrad()->getStride(),
            numFilters_,
            outputD_[i],
            outputH_[i],
            outputW_[i],
            filterSizeZ_[i],
            filterSizeY_[i],
            filterSize_[i],
            strideZ_[i],
            strideY_[i],
            stride_[i],
            paddingZ_[i],
            paddingY_[i],
            padding_[i]);
        if (weights_[i]->getWGrad()) {
          real *inData = inMat->getData() + n * inMat->getStride();
          for (int g = 0; g < groups_[i]; ++g) {
            MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
            MatrixPtr wGradMatSub =
                weights_[i]->getWGrad()->subMatrix(g * K, K);
            MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
            wGradMatSub->mul(
                *colBufDataSub, *(inMatSub->getTranspose()), 1.0, 1.0);
            inData += M * N;
          }
C
chengduoZH 已提交
177
        }
C
chengduoZH 已提交
178 179 180 181 182 183 184 185 186 187 188
        if (getInputGrad(i)) {
          real *preGrad =
              getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
          for (int g = 0; g < groups_[i]; ++g) {
            MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K);
            MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K);
            MatrixPtr inGradMatSub =
                Matrix::create(preGrad, M, N, false, useGpu_);
            inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 1.0);
            preGrad += M * N;
          }
C
chengduoZH 已提交
189 190 191
        }
      }
      REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
C
chengduoZH 已提交
192
      weights_[i]->getParameterPtr()->incUpdate(callback);
C
chengduoZH 已提交
193 194 195
    }
  }
}
C
chengduoZH 已提交
196 197
void DeConv3DLayer::bpropWeights(int i) {}
void DeConv3DLayer::bpropData(int i) {}
C
chengduoZH 已提交
198 199

void DeConv3DLayer::bpropBiases() {
C
chengduoZH 已提交
200
  const MatrixPtr &outGradMat = getOutputGrad();
C
chengduoZH 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

  if (this->sharedBiases_) {
    biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
  } else {
    biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
  }
}

void DeConv3DLayer::addBias() {
  MatrixPtr outMat = getOutputValue();
  if (this->sharedBiases_) {
    outMat->addSharedBias(*(biases_->getW()), 1.0f);
  } else {
    outMat->addBias(*(biases_->getW()), 1.0f);
  }
}

}  // namespace paddle