mnist.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MNIST dataset.

This module will download dataset from http://yann.lecun.com/exdb/mnist/ and
parse training set and test set into paddle reader creators.
"""
import paddle.v2.dataset.common
import subprocess
import numpy
import platform
__all__ = ['train', 'test', 'convert']

URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'


def reader_creator(image_filename, label_filename, buffer_size):
    def reader():
        if platform.system() == 'Darwin':
            zcat_cmd = 'gzcat'
        elif platform.system() == 'Linux':
            zcat_cmd = 'zcat'
        else:
            raise NotImplementedError()

        # According to http://stackoverflow.com/a/38061619/724872, we
        # cannot use standard package gzip here.
        m = subprocess.Popen([zcat_cmd, image_filename], stdout=subprocess.PIPE)
        m.stdout.read(16)  # skip some magic bytes

        l = subprocess.Popen([zcat_cmd, label_filename], stdout=subprocess.PIPE)
        l.stdout.read(8)  # skip some magic bytes

        try:  # reader could be break.
            while True:
                labels = numpy.fromfile(
                    l.stdout, 'ubyte', count=buffer_size).astype("int")

                if labels.size != buffer_size:
                    break  # numpy.fromfile returns empty slice after EOF.

                images = numpy.fromfile(
                    m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape(
                        (buffer_size, 28 * 28)).astype('float32')

                images = images / 255.0 * 2.0 - 1.0

                for i in xrange(buffer_size):
                    yield images[i, :], int(labels[i])
        finally:
71 72 73 74 75 76 77 78
            try:
                m.terminate()
            except:
                pass
            try:
                l.terminate()
            except:
                pass
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    return reader


def train():
    """
    MNIST training set creator.

    It returns a reader creator, each sample in the reader is image pixels in
    [0, 1] and label in [0, 9].

    :return: Training reader creator
    :rtype: callable
    """
    return reader_creator(
        paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist',
                                          TRAIN_IMAGE_MD5),
        paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist',
                                          TRAIN_LABEL_MD5), 100)


def test():
    """
    MNIST test set creator.

    It returns a reader creator, each sample in the reader is image pixels in
    [0, 1] and label in [0, 9].

    :return: Test reader creator.
    :rtype: callable
    """
    return reader_creator(
        paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist',
                                          TEST_IMAGE_MD5),
        paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist',
                                          TEST_LABEL_MD5), 100)


def fetch():
    paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5)
    paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
    paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5)
Y
Yancey1989 已提交
121
    paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist', TEST_LABEL_MD5)
122 123 124 125 126 127 128 129


def convert(path):
    """
    Converts dataset to recordio format
    """
    paddle.v2.dataset.common.convert(path, train(), 1000, "minist_train")
    paddle.v2.dataset.common.convert(path, test(), 1000, "minist_test")