test_data_balance.py 8.0 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import paddle.fluid as fluid
19
import paddle
F
fengjiayi 已提交
20 21 22 23 24 25
import numpy as np


class TestDataBalance(unittest.TestCase):
    def prepare_data(self):
        def fake_data_generator():
26
            for n in range(self.total_ins_num):
F
fengjiayi 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
                yield np.ones((3, 4)) * n, n

        # Prepare data
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            reader = paddle.batch(
                fake_data_generator, batch_size=self.batch_size)
            feeder = fluid.DataFeeder(
                feed_list=[
                    fluid.layers.data(
                        name='image', shape=[3, 4], dtype='float32'),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            self.num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
                self.data_file_name, reader, feeder)

    def prepare_lod_data(self):
        def fake_data_generator():
46
            for n in range(1, self.total_ins_num + 1):
F
fengjiayi 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
                d1 = (np.ones((n, 3)) * n).astype('float32')
                d2 = (np.array(n).reshape((1, 1))).astype('int32')
                yield d1, d2

        # Prepare lod data
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            with fluid.recordio_writer.create_recordio_writer(
                    filename=self.lod_data_file_name) as writer:
                eof = False
                generator = fake_data_generator()
                while (not eof):
                    data_batch = [
                        np.array([]).reshape((0, 3)), np.array([]).reshape(
                            (0, 1))
                    ]
                    lod = [0]
63
                    for _ in range(self.batch_size):
F
fengjiayi 已提交
64
                        try:
65
                            ins = next(generator)
F
fengjiayi 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                        except StopIteration:
                            eof = True
                            break
                        for i, d in enumerate(ins):
                            data_batch[i] = np.concatenate(
                                (data_batch[i], d), axis=0)
                        lod.append(lod[-1] + ins[0].shape[0])
                    if data_batch[0].shape[0] > 0:
                        for i, d in enumerate(data_batch):
                            t = fluid.LoDTensor()
                            t.set(data_batch[i], fluid.CPUPlace())
                            if i == 0:
                                t.set_lod([lod])
                            writer.append_tensor(t)
                        writer.complete_append_tensor()

    def setUp(self):
        self.use_cuda = fluid.core.is_compiled_with_cuda()
        self.data_file_name = './data_balance_test.recordio'
        self.lod_data_file_name = './data_balance_with_lod_test.recordio'
        self.total_ins_num = 50
        self.batch_size = 10
        self.prepare_data()
        self.prepare_lod_data()

    def main(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            data_reader = fluid.layers.io.open_files(
                filenames=[self.data_file_name],
                shapes=[[-1, 3, 4], [-1, 1]],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'])
            if self.use_cuda:
                data_reader = fluid.layers.double_buffer(data_reader)
            image, label = fluid.layers.read_file(data_reader)

            place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)

Y
yuyang18 已提交
108 109
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_data_balance = True
F
fengjiayi 已提交
110
            parallel_exe = fluid.ParallelExecutor(
Y
yuyang18 已提交
111 112 113
                use_cuda=self.use_cuda,
                main_program=main_prog,
                build_strategy=build_strategy)
F
fengjiayi 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126

            if (parallel_exe.device_count > self.batch_size):
                print("WARNING: Unittest TestDataBalance skipped. \
                    For the result is not correct when device count \
                    is larger than batch size.")
                exit(0)
            fetch_list = [image.name, label.name]

            data_appeared = [False] * self.total_ins_num
            while (True):
                try:
                    image_val, label_val = parallel_exe.run(fetch_list,
                                                            return_numpy=True)
127
                except fluid.core.EOFException:
F
fengjiayi 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                    break
                ins_num = image_val.shape[0]
                broadcasted_label = np.ones(
                    (ins_num, 3, 4)) * label_val.reshape((ins_num, 1, 1))
                self.assertEqual(image_val.all(), broadcasted_label.all())
                for l in label_val:
                    self.assertFalse(data_appeared[l[0]])
                    data_appeared[l[0]] = True
            for i in data_appeared:
                self.assertTrue(i)

    def main_lod(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            data_reader = fluid.layers.io.open_files(
                filenames=[self.lod_data_file_name],
                shapes=[[-1, 3], [-1, 1]],
                lod_levels=[1, 0],
Y
yuyang18 已提交
147
                dtypes=['float32', 'int32'])
F
fengjiayi 已提交
148 149 150 151 152
            ins, label = fluid.layers.read_file(data_reader)

            place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
Y
yuyang18 已提交
153 154
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_data_balance = True
F
fengjiayi 已提交
155
            parallel_exe = fluid.ParallelExecutor(
Y
yuyang18 已提交
156 157 158
                use_cuda=self.use_cuda,
                main_program=main_prog,
                build_strategy=build_strategy)
F
fengjiayi 已提交
159

Y
yuyang18 已提交
160
            if parallel_exe.device_count > self.batch_size:
F
fengjiayi 已提交
161 162 163 164 165 166 167 168 169 170 171
                print("WARNING: Unittest TestDataBalance skipped. \
                    For the result is not correct when device count \
                    is larger than batch size.")
                exit(0)
            fetch_list = [ins.name, label.name]

            data_appeared = [False] * self.total_ins_num
            while (True):
                try:
                    ins_tensor, label_tensor = parallel_exe.run(
                        fetch_list, return_numpy=False)
172
                except fluid.core.EOFException:
F
fengjiayi 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                    break

                ins_val = np.array(ins_tensor)
                label_val = np.array(label_tensor)
                ins_lod = ins_tensor.lod()[0]
                self.assertEqual(ins_val.shape[1], 3)
                self.assertEqual(label_val.shape[1], 1)
                self.assertEqual(len(ins_lod) - 1, label_val.shape[0])
                for i in range(0, len(ins_lod) - 1):
                    ins_elem = ins_val[ins_lod[i]:ins_lod[i + 1]][:]
                    label_elem = label_val[i][0]
                    self.assertEqual(ins_elem.all(), label_elem.all())
                    self.assertFalse(data_appeared[int(label_elem - 1)])
                    data_appeared[int(label_elem - 1)] = True

            for i in data_appeared:
                self.assertTrue(i)

    def test_all(self):
        self.main()
        self.main_lod()
Y
yuyang18 已提交
194 195 196 197


if __name__ == '__main__':
    unittest.main()