wmt16.py 13.1 KB
Newer Older
Y
ying 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Y
ying 已提交
15 16
ACL2016 Multimodal Machine Translation. Please see this website for more
details: http://www.statmt.org/wmt16/multimodal-task.html#task1
Y
ying 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

If you use the dataset created for your task, please cite the following paper:
Multi30K: Multilingual English-German Image Descriptions.

@article{elliott-EtAl:2016:VL16,
 author    = {{Elliott}, D. and {Frank}, S. and {Sima"an}, K. and {Specia}, L.},
 title     = {Multi30K: Multilingual English-German Image Descriptions},
 booktitle = {Proceedings of the 6th Workshop on Vision and Language},
 year      = {2016},
 pages     = {70--74},
 year      = 2016
}
"""

import os
import tarfile
import gzip
from collections import defaultdict

import paddle.v2.dataset.common

__all__ = [
    "train",
    "test",
    "validation",
    "convert",
    "fetch",
    "get_dict",
]

DATA_URL = ("http://cloud.dlnel.org/filepub/"
            "?uuid=46a0808e-ddd8-427c-bacd-0dbc6d045fed")
DATA_MD5 = "0c38be43600334966403524a40dcd81e"

TOTAL_EN_WORDS = 11250
TOTAL_DE_WORDS = 19220

START_MARK = "<s>"
END_MARK = "<e>"
UNK_MARK = "<unk>"


Y
ying 已提交
59
def __build_dict(tar_file, dict_size, save_path, lang):
Y
ying 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    word_dict = defaultdict(int)
    with tarfile.open(tar_file, mode="r") as f:
        for line in f.extractfile("wmt16/train"):
            line_split = line.strip().split("\t")
            if len(line_split) != 2: continue
            sen = line_split[0] if lang == "en" else line_split[1]
            for w in sen.split():
                word_dict[w] += 1

    with open(save_path, "w") as fout:
        fout.write("%s\n%s\n%s\n" % (START_MARK, END_MARK, UNK_MARK))
        for idx, word in enumerate(
                sorted(
                    word_dict.iteritems(), key=lambda x: x[1], reverse=True)):
            if idx + 3 == dict_size: break
            fout.write("%s\n" % (word[0]))


Y
ying 已提交
78
def __load_dict(tar_file, dict_size, lang, reverse=False):
Y
ying 已提交
79 80 81 82
    dict_path = os.path.join(paddle.v2.dataset.common.DATA_HOME,
                             "wmt16/%s_%d.dict" % (lang, dict_size))
    if not os.path.exists(dict_path) or (
            len(open(dict_path, "r").readlines()) != dict_size):
Y
ying 已提交
83
        __build_dict(tar_file, dict_size, dict_path, lang)
Y
ying 已提交
84 85 86 87 88 89 90 91 92 93 94

    word_dict = {}
    with open(dict_path, "r") as fdict:
        for idx, line in enumerate(fdict):
            if reverse:
                word_dict[idx] = line.strip()
            else:
                word_dict[line.strip()] = idx
    return word_dict


Y
ying 已提交
95
def __get_dict_size(src_dict_size, trg_dict_size, src_lang):
Y
ying 已提交
96 97 98 99 100 101 102 103 104
    src_dict_size = min(src_dict_size, (TOTAL_EN_WORDS if src_lang == "en" else
                                        TOTAL_DE_WORDS))
    trg_dict_size = min(trg_dict_size, (TOTAL_DE_WORDS if src_lang == "en" else
                                        TOTAL_ENG_WORDS))
    return src_dict_size, trg_dict_size


def reader_creator(tar_file, file_name, src_dict_size, trg_dict_size, src_lang):
    def reader():
Y
ying 已提交
105 106 107
        src_dict = __load_dict(tar_file, src_dict_size, src_lang)
        trg_dict = __load_dict(tar_file, trg_dict_size,
                               ("de" if src_lang == "en" else "en"))
Y
ying 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        # the indice for start mark, end mark, and unk are the same in source
        # language and target language. Here uses the source language
        # dictionary to determine their indices.
        start_id = src_dict[START_MARK]
        end_id = src_dict[END_MARK]
        unk_id = src_dict[UNK_MARK]

        src_col = 0 if src_lang == "en" else 1
        trg_col = 1 - src_col

        with tarfile.open(tar_file, mode="r") as f:
            for line in f.extractfile(file_name):
                line_split = line.strip().split("\t")
                if len(line_split) != 2:
                    continue
                src_words = line_split[src_col].split()
                src_ids = [start_id] + [
                    src_dict.get(w, unk_id) for w in src_words
                ] + [end_id]

                trg_words = line_split[trg_col].split()
                trg_ids = [trg_dict.get(w, unk_id) for w in trg_words]

                trg_ids_next = trg_ids + [end_id]
                trg_ids = [start_id] + trg_ids

                yield src_ids, trg_ids, trg_ids_next

    return reader


def train(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 train set reader.

    This function returns the reader for train data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.


    NOTE:
    The original like for training data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The train reader.
    """

Y
fix ci.  
ying 已提交
174 175 176
    if src_lang not in ["en", "de"]:
        raise ValueError("An error language type.  Only support: "
                         "en (for English); de(for Germany).")
Y
ying 已提交
177 178
    src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
                                                   src_lang)
Y
ying 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    return reader_creator(
        tar_file=paddle.v2.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                   "wmt16.tar.gz"),
        file_name="wmt16/train",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def test(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 test set reader.

    This function returns the reader for test data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.

    NOTE:
    The original like for test data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The test reader.
    """

Y
fix ci.  
ying 已提交
222 223 224
    if src_lang not in ["en", "de"]:
        raise ValueError("An error language type. "
                         "Only support: en (for English); de(for Germany).")
Y
ying 已提交
225

Y
ying 已提交
226 227
    src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
                                                   src_lang)
Y
ying 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

    return reader_creator(
        tar_file=paddle.v2.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                   "wmt16.tar.gz"),
        file_name="wmt16/test",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def validation(src_dict_size, trg_dict_size, src_lang="en"):
    """
    WMT16 validation set reader.

    This function returns the reader for validation data. Each sample the reader
    returns is made up of three fields: the source language word index sequence,
    target language word index sequence and next word index sequence.

    NOTE:
    The original like for validation data is:
    http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz

    paddle.dataset.wmt16 provides a tokenized version of the original dataset by
    using moses's tokenization script:
    https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

    Args:
        src_dict_size(int): Size of the source language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        trg_dict_size(int): Size of the target language dictionary. Three
                            special tokens will be added into the dictionary:
                            <s> for start mark, <e> for end mark, and <unk> for
                            unknown word.
        src_lang(string): A string indicating which language is the source
                          language. Available options are: "en" for English
                          and "de" for Germany.

    Returns:
        callable: The validation reader.
    """
Y
fix ci.  
ying 已提交
270 271 272
    if src_lang not in ["en", "de"]:
        raise ValueError("An error language type. "
                         "Only support: en (for English); de(for Germany).")
Y
ying 已提交
273 274
    src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size,
                                                   src_lang)
Y
ying 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    return reader_creator(
        tar_file=paddle.v2.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                                   "wmt16.tar.gz"),
        file_name="wmt16/val",
        src_dict_size=src_dict_size,
        trg_dict_size=trg_dict_size,
        src_lang=src_lang)


def get_dict(lang, dict_size, reverse=False):
    """
    return the word dictionary for the specified language.

    Args:
        lang(string): A string indicating which language is the source
                      language. Available options are: "en" for English
                      and "de" for Germany.
        dict_size(int): Size of the specified language dictionary.
        reverse(bool): If reverse is set to False, the returned python
                       dictionary will use word as key and use index as value.
                       If reverse is set to True, the returned python
                       dictionary will use index as key and word as value.

    Returns:
        dict: The word dictionary for the specific language.
    """

    if lang == "en": dict_size = min(dict_size, TOTAL_EN_WORDS)
    else: dict_size = min(dict_size, TOTAL_DE_WORDS)

    dict_path = os.path.join(paddle.v2.dataset.common.DATA_HOME,
                             "wmt16/%s_%d.dict" % (lang, dict_size))
    assert (os.path.exists(dict_path), "Word dictionary does not exist. "
            "Please invoke paddle.dataset.wmt16.train/test/validation "
            "first to build the dictionary.")
    tar_file = os.path.join(paddle.v2.dataset.common.DATA_HOME, "wmt16.tar.gz")
Y
ying 已提交
312
    return __load_dict(tar_file, dict_size, lang, reverse)
Y
ying 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349


def fetch():
    """download the entire dataset.
    """
    paddle.v4.dataset.common.download(DATA_URL, "wmt16", DATA_MD5,
                                      "wmt16.tar.gz")


def convert(path, src_dict_size, trg_dict_size, src_lang):
    """Converts dataset to recordio format.
    """

    paddle.v2.dataset.common.convert(
        path,
        train(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_train")
    paddle.v2.dataset.common.convert(
        path,
        test(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_test")
    paddle.v2.dataset.common.convert(
        path,
        validation(
            src_dict_size=src_dict_size,
            trg_dict_size=trg_dict_size,
            src_lang=src_lang),
        1000,
        "wmt16_validation")