test_edit_distance_op.py 6.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
F
fengjiayi 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
F
fengjiayi 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yibing Liu 已提交
15
import unittest
16

Y
Yibing Liu 已提交
17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest
19

Z
zhiboniu 已提交
20 21 22
import paddle


23 24 25 26 27 28 29 30
def python_edit_distance(
    input,
    label,
    input_length=None,
    label_length=None,
    normalized=True,
    ignored_tokens=None,
):
Z
zhiboniu 已提交
31 32 33 34 35 36
    return paddle.nn.functional.loss.edit_distance(
        input,
        label,
        normalized=normalized,
        ignored_tokens=ignored_tokens,
        input_length=input_length,
37 38
        label_length=label_length,
    )
Y
Yibing Liu 已提交
39 40 41


def Levenshtein(hyp, ref):
42
    """Compute the Levenshtein distance between two strings.
Y
Yibing Liu 已提交
43

44
    :param hyp: hypothesis string in index
Y
Yibing Liu 已提交
45
    :type hyp: list
46
    :param ref: reference string in index
Y
Yibing Liu 已提交
47 48 49 50 51 52 53 54 55
    :type ref: list
    """
    m = len(hyp)
    n = len(ref)
    if m == 0:
        return n
    if n == 0:
        return m

56
    dist = np.zeros((m + 1, n + 1)).astype("float32")
Y
Yibing Liu 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    for i in range(0, m + 1):
        dist[i][0] = i
    for j in range(0, n + 1):
        dist[0][j] = j

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            cost = 0 if hyp[i - 1] == ref[j - 1] else 1
            deletion = dist[i - 1][j] + 1
            insertion = dist[i][j - 1] + 1
            substitution = dist[i - 1][j - 1] + cost
            dist[i][j] = min(deletion, insertion, substitution)
    return dist[m][n]


72
class TestEditDistanceOp(OpTest):
73 74
    def setUp(self):
        self.op_type = "edit_distance"
Z
zhiboniu 已提交
75
        self.python_api = python_edit_distance
76
        normalized = False
77 78
        x1 = np.array([[12, 3, 5, 8, 2]]).astype("int64")
        x2 = np.array([[12, 4, 7, 8]]).astype("int64")
79 80
        x1 = np.transpose(x1)
        x2 = np.transpose(x2)
81 82
        self.x1_lod = [1, 4]
        self.x2_lod = [3, 1]
83

84
        num_strs = len(self.x1_lod)
85
        distance = np.zeros((num_strs, 1)).astype("float32")
86
        sequence_num = np.array([2]).astype("int64")
87 88 89

        x1_offset = 0
        x2_offset = 0
90 91
        for i in range(0, num_strs):
            distance[i] = Levenshtein(
92 93 94
                hyp=x1[x1_offset : (x1_offset + self.x1_lod[i])],
                ref=x2[x2_offset : (x2_offset + self.x2_lod[i])],
            )
95 96
            x1_offset += self.x1_lod[i]
            x2_offset += self.x2_lod[i]
97
            if normalized is True:
98
                len_ref = self.x2_lod[i]
99
                distance[i] = distance[i] / len_ref
100

101
        self.attrs = {'normalized': normalized}
102
        self.inputs = {'Hyps': (x1, [self.x1_lod]), 'Refs': (x2, [self.x2_lod])}
103
        self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
104 105

    def test_check_output(self):
W
wanghuancoder 已提交
106
        self.check_output()
107 108


109 110 111 112
class TestEditDistanceOpNormalizedCase0(OpTest):
    def reset_config(self):
        pass

113 114 115
    def post_config(self):
        pass

Y
Yibing Liu 已提交
116
    def setUp(self):
117
        self.op_type = "edit_distance"
Z
zhiboniu 已提交
118
        self.python_api = python_edit_distance
Y
Yibing Liu 已提交
119
        normalized = True
120 121
        self.x1 = np.array([[10, 3, 6, 5, 8, 2]]).astype("int64")
        self.x2 = np.array([[10, 4, 6, 7, 8]]).astype("int64")
122 123
        self.x1_lod = [3, 0, 3]
        self.x2_lod = [2, 1, 2]
124 125 126
        self.x1 = np.transpose(self.x1)
        self.x2 = np.transpose(self.x2)

127
        self.reset_config()
Y
Yibing Liu 已提交
128

129
        num_strs = len(self.x1_lod)
130
        distance = np.zeros((num_strs, 1)).astype("float32")
131
        sequence_num = np.array([num_strs]).astype("int64")
132 133 134

        x1_offset = 0
        x2_offset = 0
135 136
        for i in range(0, num_strs):
            distance[i] = Levenshtein(
137 138 139
                hyp=self.x1[x1_offset : (x1_offset + self.x1_lod[i])],
                ref=self.x2[x2_offset : (x2_offset + self.x2_lod[i])],
            )
140 141
            x1_offset += self.x1_lod[i]
            x2_offset += self.x2_lod[i]
142
            if normalized is True:
143
                len_ref = self.x2_lod[i]
144
                distance[i] = distance[i] / len_ref
145

Y
Yibing Liu 已提交
146
        self.attrs = {'normalized': normalized}
147 148
        self.inputs = {
            'Hyps': (self.x1, [self.x1_lod]),
149
            'Refs': (self.x2, [self.x2_lod]),
150
        }
151
        self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
Y
Yibing Liu 已提交
152

153 154
        self.post_config()

Y
Yibing Liu 已提交
155
    def test_check_output(self):
W
wanghuancoder 已提交
156
        self.check_output()
Y
Yibing Liu 已提交
157 158


159 160 161 162 163 164 165 166 167 168 169 170
class TestEditDistanceOpNormalizedCase1(TestEditDistanceOpNormalizedCase0):
    def reset_config(self):
        self.x1_lod = [0, 6, 0]
        self.x2_lod = [2, 1, 2]


class TestEditDistanceOpNormalizedCase2(TestEditDistanceOpNormalizedCase0):
    def reset_config(self):
        self.x1_lod = [0, 0, 6]
        self.x2_lod = [2, 2, 1]


171 172 173 174 175 176 177 178 179
class TestEditDistanceOpNormalizedTensor(OpTest):
    def reset_config(self):
        self.x1 = np.array([[10, 3, 0, 0], [6, 5, 8, 2]], dtype=np.int64)
        self.x2 = np.array([[10, 4, 0], [6, 7, 8]], dtype=np.int64)
        self.x1_lod = np.array([2, 4], dtype=np.int64)
        self.x2_lod = np.array([2, 3], dtype=np.int64)

    def setUp(self):
        self.op_type = "edit_distance"
Z
zhiboniu 已提交
180
        self.python_api = python_edit_distance
181 182 183 184 185 186
        normalized = True

        self.reset_config()

        num_strs = len(self.x1_lod)
        distance = np.zeros((num_strs, 1)).astype("float32")
187
        sequence_num = np.array([num_strs]).astype("int64")
188 189

        for i in range(0, num_strs):
190 191 192 193
            distance[i] = Levenshtein(
                hyp=self.x1[i][0 : self.x1_lod[i]],
                ref=self.x2[i][0 : self.x2_lod[i]],
            )
194 195 196 197 198 199 200 201 202
            if normalized is True:
                len_ref = self.x2_lod[i]
                distance[i] = distance[i] / len_ref

        self.attrs = {'normalized': normalized}
        self.inputs = {
            'Hyps': self.x1,
            'Refs': self.x2,
            'HypsLength': self.x1_lod,
203
            'RefsLength': self.x2_lod,
204 205 206 207
        }
        self.outputs = {'Out': distance, 'SequenceNum': sequence_num}

    def test_check_output(self):
W
wanghuancoder 已提交
208
        self.check_output()
209 210


Y
Yibing Liu 已提交
211
if __name__ == '__main__':
Z
zhiboniu 已提交
212
    paddle.enable_static()
Y
Yibing Liu 已提交
213
    unittest.main()