mnist.py 6.0 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
import numpy
Q
qiaolongfei 已提交
4
import paddle.v2 as paddle
Q
qiaolongfei 已提交
5

Q
qiaolongfei 已提交
6
BATCH_SIZE = 100
Q
qiaolongfei 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

scope = core.Scope()
place = core.CPUPlace()
dev_ctx = core.DeviceContext.create(place)

# init_net = core.Net.create()
forward_network = core.Net.create()

# should be init after forward_op is constructed
# backward_net = core.Operator.backward(forward_net, set())
backward_net = None
optimize_net = core.Net.create()


def atom_id():
    id = 0
    while True:
        yield id
        id += 1


uniq_id = atom_id().next


def data_layer(name, dims):
    var = scope.new_var(name)
    tensor = var.get_tensor()
    tensor.set_dims(dims)  # 1 is batch size holder.
    return name


def feed_data(name, data):
Q
qiaolongfei 已提交
39
    assert isinstance(data, numpy.ndarray)
Q
qiaolongfei 已提交
40 41
    tensor = scope.find_var(name).get_tensor()
    tensor.set_dims(data.shape)
Q
qiaolongfei 已提交
42 43
    if data.dtype == numpy.dtype('int32'):
        tensor.alloc_int(place)
Q
qiaolongfei 已提交
44 45
    elif data.dtype == numpy.dtype('float32'):
        tensor.alloc_float(place)
Q
qiaolongfei 已提交
46 47
    else:
        raise ValueError("data type not supported")
Q
qiaolongfei 已提交
48 49 50 51 52 53 54
    tensor.set(data, place)


def grad_var_name(var_name):
    return var_name + "@GRAD"


Q
qiaolongfei 已提交
55
def sgd_optimizer(net, param_name, learning_rate=0.01):
Q
qiaolongfei 已提交
56 57
    grad_name = grad_var_name(param_name)
    optimize_op = Operator(
Q
qiaolongfei 已提交
58 59 60 61 62
        "sgd",
        param=param_name,
        grad=grad_name,
        param_out=param_name,
        learning_rate=learning_rate)
Q
qiaolongfei 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76
    net.add_op(optimize_op)


# should use operator and add these to the init_network
def init_param(param_name, dims):
    var = scope.new_var(param_name)
    tensor = var.get_tensor()
    tensor.set_dims(dims)
    data = numpy.random.uniform(
        low=0.0, high=1.0, size=tensor.shape()).astype("float32")
    tensor.set(data, place)


# fc_layer
Q
qiaolongfei 已提交
77
def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None):
Q
qiaolongfei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    Add a fc layer to net

    :param input: input variable name.
    :type input: str
    :param size: fully connected layer size.
    :param act: activation name
    :param param: parameter attribute, used for initialize parameters.
    :param bias: bias attribute. False will not have a bias.
    :param name: the name of fc layer. If not set, model will generate a
    readable name
    :return: output variable name.
    """
    if name is None:
        name = 'fc_%d' % uniq_id()
    if not isinstance(name, str):
        raise ValueError("name should be string")

    input_dims = scope.find_var(input).get_tensor().get_dims()

    w_name = param or name + ".w"
    init_param(param_name=w_name, dims=[input_dims[1], size])
    sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01)

    pre_activation = name + ".mul.out"
    scope.new_var(pre_activation)
    mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation)
    net.add_op(mul_op)

    # create bias variable if needed
    if bias:
        bias_name = name + ".b"
        init_param(param_name=bias_name, dims=[size])
        sgd_optimizer(
            net=optimize_net, param_name=bias_name, learning_rate=0.01)
        bias_out = name + ".rowwise_add.out"
        scope.new_var(bias_out)
        rowwise_add_op = Operator(
            "rowwise_add", X=pre_activation, b=bias_name, Out=bias_out)
        net.add_op(rowwise_add_op)
        pre_activation = bias_out

    activation_op = Operator(act, X=pre_activation, Y=name)
    net.add_op(activation_op)
    scope.new_var(name)
    net.infer_shape(scope)
    return name


def cross_entropy_layer(net, input, label):
    cost_name = 'cross_entropy_%d' % uniq_id()
    cross_entropy_op = Operator(
        "onehot_cross_entropy", X=input, label=label, Y=cost_name)
    net.add_op(cross_entropy_op)
    scope.new_var(cost_name)
    net.infer_shape(scope)
    return cost_name


Q
qiaolongfei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def get_backward_net(forward_net):
    net = core.Operator.backward(forward_net, set())
    for input in net.inputs()["all"]:
        var = scope.new_var(input)
        var.get_tensor()
    for output in net.outputs()["all"]:
        var = scope.new_var(output)
        var.get_tensor()
    return net


def print_inputs_outputs(op):
    print("===============" + op.type() + "==============")
    print("***inputs:***")
    for input in op.inputs()["all"]:
        print input, scope.find_var(input).get_tensor().get_dims()
    print("***outputs:***")
    for output in op.outputs()["all"]:
        print output, scope.find_var(output).get_tensor().get_dims()
    print("")
    print("")


Q
qiaolongfei 已提交
160 161 162 163 164
def set_cost():
    cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor())
    print(cost_data.sum() / len(cost_data))

    cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor()
Q
qiaolongfei 已提交
165

Q
qiaolongfei 已提交
166 167
    cost_grad.set_dims(cost_data.shape)
    cost_grad.alloc_float(place)
Q
qiaolongfei 已提交
168
    cost_grad.set(numpy.ones(cost_data.shape).astype("float32"), place)
Q
qiaolongfei 已提交
169 170


Q
qiaolongfei 已提交
171 172 173 174
images = data_layer(name='pixel', dims=[BATCH_SIZE, 784])
label = data_layer(name='label', dims=[BATCH_SIZE])
fc = fc_layer(net=forward_network, input=images, size=10, act="softmax")
cost = cross_entropy_layer(net=forward_network, input=fc, label=label)
Q
qiaolongfei 已提交
175

Q
qiaolongfei 已提交
176
forward_network.complete_add_op(True)
Q
qiaolongfei 已提交
177 178
backward_net = get_backward_net(forward_network)
optimize_net.complete_add_op(True)
Q
qiaolongfei 已提交
179 180 181

print(forward_network)
print(backward_net)
Q
qiaolongfei 已提交
182
print(optimize_net)
Q
qiaolongfei 已提交
183

Q
qiaolongfei 已提交
184 185 186 187
print_inputs_outputs(forward_network)
print_inputs_outputs(backward_net)
print_inputs_outputs(optimize_net)

Q
qiaolongfei 已提交
188 189 190 191 192 193
reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.mnist.train(), buf_size=8192),
    batch_size=BATCH_SIZE)

PASS_NUM = 1000
Q
qiaolongfei 已提交
194
for pass_id in range(PASS_NUM):
Q
qiaolongfei 已提交
195

Q
qiaolongfei 已提交
196 197 198 199 200 201
    print("pass[" + str(pass_id) + "]")
    for data in reader():
        image = numpy.array(map(lambda x: x[0], data)).astype("float32")
        label = numpy.array(map(lambda x: x[1], data)).astype("int32")
        feed_data("pixel", image)
        feed_data("label", label)
Q
qiaolongfei 已提交
202

Q
qiaolongfei 已提交
203 204 205 206 207
        forward_network.infer_shape(scope)
        forward_network.run(scope, dev_ctx)
        set_cost()
        backward_net.infer_shape(scope)
        backward_net.run(scope, dev_ctx)
Q
qiaolongfei 已提交
208

Q
qiaolongfei 已提交
209
        optimize_net.run(scope, dev_ctx)