test_gru_op.py 5.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18 19
import unittest
import numpy as np
import math
M
minqiyang 已提交
20
import functools
21
from op_test import OpTest
T
tensor-tang 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34
from test_lstm_op import ACTIVATION


def gru(
        input,  # T x 3D
        lod,  # 1 x N
        h0,  # N x D
        weight,  # D x 3D
        bias,  # 1 x 3D
        is_reverse,
        act_state,
        act_gate):
    def _seq_to_batch(lod, is_reverse):
G
guosheng 已提交
35
        idx_in_seq_list = []
36 37 38 39
        seq_lens = lod[0]
        seq_starts = [0]
        for i in range(len(seq_lens)):
            seq_starts.append(seq_starts[-1] + seq_lens[i])
G
guosheng 已提交
40
        sorted_seqs = sorted(
M
minqiyang 已提交
41 42
            list(range(len(seq_lens))),
            key=functools.cmp_to_key(lambda x, y: seq_lens[y] - seq_lens[x]))
G
guosheng 已提交
43 44 45 46 47 48 49 50 51 52 53
        num_batch = seq_lens[sorted_seqs[0]]
        for batch_idx in range(num_batch):
            idx_in_seq = []
            for i in range(len(seq_lens)):
                if seq_lens[sorted_seqs[i]] <= batch_idx:
                    break
                idx = (seq_starts[sorted_seqs[i] + 1] - 1 - batch_idx
                       ) if is_reverse else (
                           seq_starts[sorted_seqs[i]] + batch_idx)
                idx_in_seq.append(idx)
            idx_in_seq_list.append(idx_in_seq)
G
guosheng 已提交
54
        return idx_in_seq_list, sorted_seqs
G
guosheng 已提交
55

T
tensor-tang 已提交
56 57 58 59 60 61 62 63
    def _step(x, h_p, w, b, act_state, act_gate):
        T = x.shape[0]
        D = w.shape[0]
        g = x + np.tile(b, (T, 1))
        w_u_r = w.flatten()[:D * D * 2].reshape((D, D * 2))
        u_r = act_gate(np.dot(h_p, w_u_r) + g[:, :D * 2])
        u = u_r[:, :D]
        r = u_r[:, D:D * 2]
G
guosheng 已提交
64
        r_h_p = r * h_p
T
tensor-tang 已提交
65 66
        w_c = w.flatten()[D * D * 2:].reshape((D, D))
        c = act_state(np.dot(r_h_p, w_c) + g[:, D * 2:])
G
guosheng 已提交
67 68 69 70
        g = np.hstack((u_r, c))
        h = u * c + (1 - u) * h_p
        return g, r_h_p, h

T
tensor-tang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    T = sum(lod[0])
    N = len(lod[0])
    D = weight.shape[0]
    batch_gate = np.zeros((T, 3 * D), dtype='float64')
    batch_reset_hidden_prev = np.zeros((T, D), dtype='float64')
    batch_hidden = np.zeros((T, D), dtype='float64')
    hidden = np.zeros((T, D), dtype='float64')

    idx_in_seq_list, sorted_seqs = _seq_to_batch(lod, is_reverse)
    h_p = h0[sorted_seqs]
    max_seq_len = len(idx_in_seq_list)
    assert len(idx_in_seq_list[0]) == N
    end_idx = 0
    for batch_idx in range(max_seq_len):
        x = input[idx_in_seq_list[batch_idx]]
        g, r_h_p, h = _step(x, h_p, weight, bias, act_state, act_gate)
        if batch_idx < (max_seq_len - 1):
            h_p = h[:len(idx_in_seq_list[batch_idx + 1])]
        start_idx = end_idx
        end_idx = start_idx + len(idx_in_seq_list[batch_idx])
        batch_gate[start_idx:end_idx] = g
        batch_reset_hidden_prev[start_idx:end_idx] = r_h_p
        batch_hidden[start_idx:end_idx] = h
        hidden[idx_in_seq_list[batch_idx]] = h
    return batch_gate, batch_reset_hidden_prev, batch_hidden, hidden
G
guosheng 已提交
96 97


T
tensor-tang 已提交
98
class TestGRUOp(OpTest):
G
guosheng 已提交
99
    def set_confs(self):
T
tensor-tang 已提交
100
        pass
G
guosheng 已提交
101 102 103

    def setUp(self):
        self.op_type = "gru"
T
tensor-tang 已提交
104 105 106 107 108 109 110
        self.lod = [[2, 4, 3]]
        self.D = 5
        self.is_reverse = False
        self.with_h0 = True
        self.with_bias = True
        self.act_state = 'tanh'
        self.act_gate = 'sigmoid'
G
guosheng 已提交
111
        self.set_confs()
T
tensor-tang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

        T = sum(self.lod[0])
        N = len(self.lod[0])

        input = np.random.rand(T, 3 * self.D).astype('float64')
        weight = np.random.rand(self.D, 3 * self.D).astype('float64')
        bias = np.random.rand(
            1, 3 * self.D).astype('float64') if self.with_bias else np.zeros(
                (1, 3 * self.D), dtype='float64')
        h0 = np.random.rand(
            N, self.D).astype('float64') if self.with_h0 else np.zeros(
                (N, self.D), dtype='float64')

        batch_gate, batch_reset_hidden_prev, batch_hidden, hidden = gru(
            input, self.lod, h0, weight, bias, self.is_reverse,
            ACTIVATION[self.act_state], ACTIVATION[self.act_gate])
        self.inputs = {'Input': (input, self.lod), 'Weight': weight}

        if self.with_bias:
            self.inputs['Bias'] = bias

        if self.with_h0:
            self.inputs['H0'] = h0

        self.outputs = {
            'Hidden': (hidden, self.lod),
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden,
        }

        self.attrs = {
            'activation': self.act_state,
            'gate_activation': self.act_gate,
            'is_reverse': self.is_reverse
        }
G
guosheng 已提交
148 149

    def test_check_output(self):
T
tensor-tang 已提交
150
        self.check_output(atol=1e-8)
G
guosheng 已提交
151 152 153 154 155 156

    def test_check_grad(self):
        self.check_grad(['Input', 'H0', 'Weight', 'Bias'], ['Hidden'])


class TestGRUOpNoInitial(TestGRUOp):
T
tensor-tang 已提交
157 158
    def set_confs(self):
        self.with_h0 = False
G
guosheng 已提交
159 160 161 162 163

    def test_check_grad(self):
        self.check_grad(['Input', 'Weight', 'Bias'], ['Hidden'])


T
tensor-tang 已提交
164 165 166 167 168 169 170 171
class TestGRUOpNoBias(TestGRUOp):
    def set_confs(self):
        self.with_bias = False

    def test_check_grad(self):
        self.check_grad(['Input', 'H0', 'Weight'], ['Hidden'])


G
guosheng 已提交
172 173 174 175 176 177 178
class TestGRUOpReverse(TestGRUOp):
    def set_confs(self):
        self.is_reverse = True


if __name__ == "__main__":
    unittest.main()