framework.py 63.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
22
from . import core
Y
Yu Yang 已提交
23
import unique_name
Y
Yu Yang 已提交
24

25
__all__ = [
26 27 28 29 30 31 32
    'Block',
    'Variable',
    'Program',
    'Operator',
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
33
    'get_var',
34
]
Y
Yu Yang 已提交
35

Q
qiaolongfei 已提交
36 37 38 39 40 41 42 43
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
44 45
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
46 47 48
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
49

50
def convert_np_dtype_to_dtype_(np_dtype):
51 52
    """
    Convert the data type in numpy to the data type in Paddle
53

54
    Args:
55
        np_dtype(np.dtype): the data type in numpy.
56

57 58
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
59 60

    """
61 62
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
63
        return core.VarDesc.VarType.FP32
64
    elif dtype == np.float64:
65
        return core.VarDesc.VarType.FP64
66
    elif dtype == np.float16:
67
        return core.VarDesc.VarType.FP16
68
    elif dtype == np.int32:
69
        return core.VarDesc.VarType.INT32
70
    elif dtype == np.int16:
71
        return core.VarDesc.VarType.INT16
72
    elif dtype == np.int64:
73
        return core.VarDesc.VarType.INT64
74
    elif dtype == np.bool:
75
        return core.VarDesc.VarType.BOOL
76 77
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
78 79
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
80 81 82 83 84
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
85 86 87
    """
    Check the data type is floating or not.
    Args:
88
        dtype(np.dtype|core.VarDesc.VarType): data type.
89 90 91 92 93
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
94
    if not isinstance(dtype, core.VarDesc.VarType):
95 96
        dtype = convert_np_dtype_to_dtype_(dtype)

97 98 99 100
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
101 102


Y
Yang Yang(Tony) 已提交
103
def _debug_string_(proto, throw_on_error=True):
104 105 106 107 108 109 110 111 112 113 114
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
115
    error_fields = list()
Y
Yang Yang(Tony) 已提交
116
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
117 118
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
119 120 121
    return proto.__str__()


Y
Yu Yang 已提交
122
class Variable(object):
123
    """
124 125 126 127
    In Fluid, every input and output of an operator is a variable. In most 
    cases, variables are used for holding different kinds of data or training 
    labels. A variable belongs to a block. All variable has its own name and 
    two variables in different blocks could have the same name.
128

129 130
    There are many kinds of variables. Each kind of them has its own attributes 
    and usages. Please reference the framework.proto for details. 
131

132
    Most of a Variable's member variables can be setted to be None. It mean 
133
    it is not available or will be specified later.
134 135

    Args:
136
        block(Block): The block that the variable belongs to.
137 138
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
139 140
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
141
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
142
            Some kinds of variable do not contain shape, just set it to None.
143 144 145
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
146
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
147
            series data.
148
            Default: None
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
171 172
    """

Y
Yu Yang 已提交
173 174
    def __init__(self,
                 block,
Y
Yu Yang 已提交
175
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
176 177 178 179
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
180
                 capacity=None,
Q
QI JUN 已提交
181
                 persistable=None,
F
fengjiayi 已提交
182
                 error_clip=None,
Y
Yu Yang 已提交
183
                 stop_gradient=False,
F
fengjiayi 已提交
184
                 is_data=False,
Y
Yu Yang 已提交
185
                 **kwargs):
Y
Yu Yang 已提交
186
        self.block = block
F
fengjiayi 已提交
187
        self.error_clip = error_clip
Y
Yu Yang 已提交
188 189

        if name is None:
Y
Yu Yang 已提交
190
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
191 192 193 194
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
195
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
196
            is_new_var = True
Y
Yu Yang 已提交
197

Y
Yu Yang 已提交
198 199 200 201 202 203 204 205
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
206
        if shape is not None:
Y
Yu Yang 已提交
207
            if is_new_var:
208
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
209 210 211 212 213 214 215 216
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
217
        if dtype is not None:
218
            if not isinstance(dtype, core.VarDesc.VarType):
219
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
220
            if is_new_var:
F
fengjiayi 已提交
221
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
222
            else:
F
fengjiayi 已提交
223
                old_dtype = self.dtype
Q
QI JUN 已提交
224
                if dtype != old_dtype:
Y
Yu Yang 已提交
225 226 227 228 229
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
230 231

        if lod_level is not None:
Y
Yu Yang 已提交
232
            if is_new_var:
233
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
234 235 236 237 238 239 240
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
241 242 243 244 245 246 247 248 249 250 251
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

252 253 254 255 256 257 258 259
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
260
        self.block.vars[name] = self
Y
Yu Yang 已提交
261
        self.op = None
Y
Yu Yang 已提交
262
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
263
        self.is_data = is_data
Y
Yu Yang 已提交
264

265
    def __str__(self):
Y
Yang Yang(Tony) 已提交
266 267
        return self.to_string(True)

F
update  
fengjiayi 已提交
268
    def to_string(self, throw_on_error, with_details=False):
269 270 271 272
        """
        Get debug string.

        Args:
273 274
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
275
            with_details(bool): more details about variables and parameters
276 277
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
278

279 280
        Returns:
            str: The debug string.
281
        """
F
update  
fengjiayi 已提交
282 283
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
284 285
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
286 287 288 289 290 291 292
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
293 294 295

    __repr__ = __str__

296
    def set_desc(self, input):
297 298 299 300 301 302 303 304 305
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
306 307
        self.desc = input

308 309 310 311
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
312 313 314 315
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
316 317
    @property
    def name(self):
318
        return self.desc.name()
Y
Yu Yang 已提交
319

T
typhoonzero 已提交
320 321 322 323
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
324 325 326
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
327
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
328 329

    @property
F
fengjiayi 已提交
330 331
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
332 333 334

    @property
    def lod_level(self):
335
        return self.desc.lod_level()
Y
Yu Yang 已提交
336

Y
Yu Yang 已提交
337 338 339 340
    @property
    def type(self):
        return self.desc.type()

341
    def set_error_clip(self, error_clip):
342 343 344 345 346 347 348 349 350
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
351 352
        self.error_clip = error_clip

Y
Yu Yang 已提交
353

F
fengjiayi 已提交
354 355 356
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
357

358 359
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
360 361 362 363 364 365 366 367 368 369
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
370 371 372 373
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
374 375 376 377 378 379 380 381 382
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
383
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
384 385 386 387 388 389
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
390 391 392 393 394 395 396 397
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
398 399
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
400 401
        return self.op_proto_map[type]

402 403 404 405 406 407 408
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
409

Y
Yu Yang 已提交
410
class Operator(object):
411
    """
412 413 414 415 416 417 418
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
419
        type(str): The type of operator. Default None.
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
451
    """
452 453 454 455 456
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
typhoonzero 已提交
457
        'channel_recv', 'select', 'gen_nccl_id'
458
    }
459

Y
Yu Yang 已提交
460 461
    def __init__(self,
                 block,
Y
Yu Yang 已提交
462
                 desc,
Y
Yu Yang 已提交
463 464 465 466
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
467

Y
Yu Yang 已提交
468
        self.block = block
Y
Yu Yang 已提交
469
        self.desc = desc
T
typhoonzero 已提交
470
        self.attrs = attrs
Y
yuyang18 已提交
471 472 473 474 475 476 477 478
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
479 480 481 482 483 484 485 486

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
487

F
fengjiayi 已提交
488 489 490 491 492
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
493
        self.desc.set_type(type)
F
fengjiayi 已提交
494
        proto = OpProtoHolder.instance().get_op_proto(type)
495

Y
Yang Yang(Tony) 已提交
496 497
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
498
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
499 500
                    return True
            return False
Q
QI JUN 已提交
501

Y
Yang Yang(Tony) 已提交
502 503 504 505 506 507 508
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
509 510 511 512
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
513 514
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
515 516 517
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
518 519 520 521
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
522
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
523 524
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
525

Y
Yu Yang 已提交
526
        if outputs is not None:
527 528 529 530 531 532 533
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
534 535
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
536 537
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
538

F
fengjiayi 已提交
539
            for out_proto in proto.outputs:
540 541 542 543
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
544 545
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
546 547 548 549 550 551
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
552

Y
yuyang18 已提交
553 554
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
555
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
556
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
557
                attr_name = attr.name
Y
yuyang18 已提交
558 559
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
560
                    continue
Y
yuyang18 已提交
561 562 563 564 565
                if isinstance(self.attrs[attr_name], Block):
                    self.desc.set_block_attr(attr_name,
                                             self.attrs[attr_name].desc)
                elif isinstance(self.attrs[attr_name], core.BlockDesc) or \
                        isinstance(self.attrs[attr_name], core.ProgramDesc):
T
typhoonzero 已提交
566
                    self.desc.set_serialized_attr(
Y
yuyang18 已提交
567
                        attr_name, self.attrs[attr_name].serialize_to_string())
Y
Yang Yang(Tony) 已提交
568
                else:
Y
yuyang18 已提交
569
                    self.desc.set_attr(attr_name, self.attrs[attr_name])
570
        self.desc.check_attrs()
571
        if self.has_kernel(type):
Q
QI JUN 已提交
572
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
573
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
574

575 576 577
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
578
    def to_string(self, throw_on_error):
579
        """
580 581
        Get debug string.

582
        Args:
583 584
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
585

586 587
        Returns:
            str: The debug string.
588 589

        """
590 591
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
592 593 594 595
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
596 597 598

    __repr__ = __str__

F
fengjiayi 已提交
599 600 601 602 603
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
604
        """
605
        Get the input arguments according to the input parameter name.
606

607 608
        Args:
            name(str): The input parameter name.
609

610 611 612
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
613
        """
F
fengjiayi 已提交
614 615
        return self.desc.input(name)

T
typhoonzero 已提交
616
    def rename_input(self, old_name, new_name):
617 618 619 620 621 622 623 624 625 626
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
627 628 629
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
630 631 632 633 634 635 636 637 638 639
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
640 641
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
642 643 644 645
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
646 647 648 649 650 651 652 653
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
654
    def output(self, name):
655
        """
656
        Get output arguments by the output parameter name.
657

658 659
        Args:
            name(str): The output parameter name.
660

661 662 663
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
664
        """
F
fengjiayi 已提交
665 666 667 668 669 670
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

671 672 673 674 675 676 677 678
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
679
    def has_attr(self, name):
680
        """
681 682
        Whether this Operator has the attribute with name or not.

683
        Args:
684
            name(str): the attribute name.
685

686 687
        Returns:
            bool: True if has this attribute.
688 689

        """
F
fengjiayi 已提交
690 691 692
        return self.desc.has_attr(name)

    def attr_type(self, name):
693
        """
694
        Get the type of attribute by attribute's name.
695

696 697
        Args:
            name(str): the attribute name.
698

699 700
        Returns:
            core.AttrType: the attribute type.
701
        """
F
fengjiayi 已提交
702 703
        return self.desc.attr_type(name)

Y
yuyang18 已提交
704
    def set_attr(self, name, val):
705 706 707 708 709 710 711 712 713 714
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
715
        self.attrs[name] = val
Q
Qiyang Min 已提交
716 717 718 719 720 721 722
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
723

F
fengjiayi 已提交
724 725 726 727 728
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
729
        """
730 731
        Get the attribute by name.

732
        Args:
733
            name(str): the attribute name.
734

735 736
        Returns:
            bool|int|str|float|list: The attribute value. The return value
737 738
            can be any valid attribute type.
        """
F
fengjiayi 已提交
739
        return self.desc.attr(name)
Y
Yu Yang 已提交
740

F
fengjiayi 已提交
741
    def block_attr(self, name):
742
        """
743
        Get the block attribute by name.
744

745 746
        Args:
            name(str): the attribute name.
747

748 749
        Returns:
            int: the block index.
750
        """
F
fengjiayi 已提交
751
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
752

J
JiayiFeng 已提交
753
    def all_attrs(self):
F
fengjiayi 已提交
754
        """
755 756 757 758
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
759 760 761 762 763 764 765 766 767 768
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
769

Y
Yu Yang 已提交
770
class Block(object):
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
800
    def __init__(self, program, idx):
Y
Yu Yang 已提交
801
        self.desc = program.desc.block(idx)
802
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
803
        self.ops = list()  # operator list
Y
Yu Yang 已提交
804
        self.program = program
805
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
806

807
    def __str__(self):
Y
Yang Yang(Tony) 已提交
808 809
        return self.to_string(True)

F
fengjiayi 已提交
810 811
    def to_string(self, throw_on_error, with_details=False):
        """
812 813
        Get debug string.

F
fengjiayi 已提交
814 815
        Args:
            throw_on_error(bool): raise exception when self is not initialized
816
                when throw_on_error is True.
F
update  
fengjiayi 已提交
817
            with_details(bool): more details about variables and parameters
818 819
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
820

821 822
        Returns:
            str: The debug string.
F
fengjiayi 已提交
823 824 825 826
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
827
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
828 829 830
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
831
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
832
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
833
            for op in self.ops:
F
fengjiayi 已提交
834 835
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
836 837 838 839 840 841
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
842 843 844

    __repr__ = __str__

Y
Yu Yang 已提交
845 846
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
847
        return self.desc.parent
Y
Yu Yang 已提交
848

Y
Yu Yang 已提交
849 850 851 852 853
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
854 855 856 857 858 859 860 861 862
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
Y
Yu Yang 已提交
863 864
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
865 866
    @property
    def idx(self):
Y
Yu Yang 已提交
867
        return self.desc.id
Y
Yu Yang 已提交
868

Q
Qiao Longfei 已提交
869
    def var(self, name):
870 871 872 873 874 875 876 877 878 879 880 881 882
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
883
        if not isinstance(name, basestring):
884 885 886
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
887 888
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
889
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
890
        return v
Q
Qiao Longfei 已提交
891

F
fengjiayi 已提交
892
    def var_recursive(self, name):
893 894 895 896 897 898 899 900 901 902 903 904 905
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
932

Q
Qiao Longfei 已提交
933
    def all_parameters(self):
934 935 936 937 938
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
939

Y
Yu Yang 已提交
940
    def create_var(self, *args, **kwargs):
941
        var = Variable(block=self, *args, **kwargs)
942 943
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
944
        return var
Y
Yu Yang 已提交
945

Q
Qiao Longfei 已提交
946 947 948
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
949 950 951
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
952 953 954 955 956 957 958 959 960 961 962 963

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
964 965
        """
        if not self.has_var(name):
966
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
967 968
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
969
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
970 971 972 973 974 975 976
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
977
            var_type = "Variable"
T
wip  
typhoonzero 已提交
978 979 980 981
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
982
        orig_var_type = v.type
T
typhoonzero 已提交
983
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
984
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
985
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
986
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
987 988 989 990
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
991
                type=orig_var_type,
T
wip  
typhoonzero 已提交
992 993 994 995 996 997 998
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
999
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1000 1001
            var = Variable(
                self,
T
typhoonzero 已提交
1002
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1003 1004 1005 1006 1007 1008 1009 1010
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
1011
        self.sync_with_cpp()
1012
        return var
T
typhoonzero 已提交
1013

1014 1015 1016 1017 1018
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
1019 1020
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1021
        param = Parameter(global_block, *args, **kwargs)
1022 1023
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
1024
        return param
Y
Yu Yang 已提交
1025

Y
Yu Yang 已提交
1026
    def append_op(self, *args, **kwargs):
1027 1028 1029 1030 1031 1032
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1033
        op_desc = self.desc.append_op()
1034
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1035 1036 1037
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
1038
    def insert_op(self, index, *args, **kwargs):
1039 1040 1041 1042 1043 1044 1045 1046 1047
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
Q
qiaolongfei 已提交
1048 1049 1050 1051 1052 1053
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

1054
    def remove_op(self, index):
1055 1056 1057 1058 1059 1060 1061 1062 1063
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
1064 1065 1066 1067
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
1068
    def slice_ops(self, start, end):
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1079
        return self.ops[start:end]
Y
Yancey1989 已提交
1080

Y
Yu Yang 已提交
1081
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
1082 1083
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1084
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1085 1086
        return op

Q
Qiao Longfei 已提交
1087
    def sync_with_cpp(self):
1088
        """
1089 1090
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1091
        """
Q
Qiao Longfei 已提交
1092 1093 1094 1095 1096
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1097 1098 1099 1100 1101
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1102
        # sync operators from cpp
1103 1104 1105 1106
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1123 1124 1125 1126 1127

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1128
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1129 1130 1131 1132 1133 1134 1135

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1149 1150 1151 1152
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

1153 1154
    def copy_param_info_from(self, other):
        """
1155 1156
        Copy the information of parameters from the other block.

1157
        Args:
1158 1159 1160 1161 1162
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1186
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1187
                error_clip=p.error_clip,
1188 1189 1190
                name=v.name)
            self.vars[new_p.name] = new_p

1191 1192 1193
    def clone_variable(self, var):
        """
        Clone a variable into current block.
1194

1195 1196 1197 1198
        Args:
            var: the variable to be cloned.

        Returns:
1199
            Variable: the new  variable cloned from 'var' in current block.
1200 1201
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1202 1203 1204 1205 1206
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1207 1208 1209 1210 1211 1212
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1213 1214
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1215 1216 1217 1218 1219 1220 1221
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1222 1223
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1224
        return ret_var
1225

Y
Yu Yang 已提交
1226 1227

class Program(object):
D
dzhwinter 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1239
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1240 1241

    Returns:
Y
yuyang18 已提交
1242
        A empty program.
D
dzhwinter 已提交
1243 1244

    Examples:
Y
yuyang18 已提交
1245 1246 1247 1248 1249 1250
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1251 1252 1253

    """

1254 1255
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1256 1257
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1258
        self._seed = 0
Y
yuyang18 已提交
1259
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1260
        self._op_role_var = []
Y
yuyang18 已提交
1261 1262 1263

    @property
    def op_role(self):
Y
yuyang18 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1277 1278 1279 1280 1281 1282 1283 1284
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1285 1286 1287 1288 1289 1290 1291
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1292 1293 1294 1295
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1296
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1297 1298 1299

    @contextlib.contextmanager
    def optimized_guard(self, var):
Y
yuyang18 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
            var(Variable|str): The variable (name) to be optimized.

        Examples:

            >>> p, g = backward(...)
Y
yuyang18 已提交
1312
            >>> with program.optimized_guard(p):
Y
yuyang18 已提交
1313 1314
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1315 1316
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
Y
yuyang18 已提交
1317
        self._op_role_var = [var.name if isinstance(var, Variable) else var]
Y
yuyang18 已提交
1318
        yield
Y
yuyang18 已提交
1319
        self._op_role_var = []
Y
yuyang18 已提交
1320
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1321

1322
    def __str__(self):
Y
yuyang18 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1332 1333
        return self.to_string(True)

F
fengjiayi 已提交
1334 1335 1336
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1337

F
fengjiayi 已提交
1338
        Args:
Y
yuyang18 已提交
1339 1340
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1341

Y
yuyang18 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1365

1366
    def get_desc(self):
Y
yuyang18 已提交
1367 1368 1369 1370 1371 1372 1373
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1374 1375
        return self.desc

1376
    def clone(self, for_test=False):
Y
yuyang18 已提交
1377 1378 1379
        """
        Create a new, duplicated program.

1380

Y
yuyang18 已提交
1381 1382 1383 1384
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1385

Y
yuyang18 已提交
1386 1387 1388 1389
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1390 1391 1392 1393 1394
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1395 1396

        Args:
Y
yuyang18 已提交
1397 1398
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1399

D
dzhwinter 已提交
1400
        Returns:
Y
yuyang18 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1454 1455
        """
        if for_test:
1456
            p = self.inference_optimize()
1457
        else:
1458
            p = Program()
1459
            p.desc = core.ProgramDesc(self.desc)
1460 1461 1462
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1463
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1464
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1465
        return p
1466

1467
    def prune(self, targets):
Y
yuyang18 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1483 1484 1485 1486 1487 1488
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1489 1490
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1491
                    # and we need to find the current op that generate this
1492 1493 1494 1495 1496 1497 1498 1499
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1500
                    t = t.op
1501 1502 1503 1504
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1505
                else:
1506 1507
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1508 1509 1510 1511 1512 1513 1514 1515

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1516
    def inference_optimize(self):
Y
yuyang18 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        """
        This method will create a new program and change the :code:`is_test`
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1528 1529
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1530
        res = Program()
1531 1532 1533 1534 1535 1536 1537
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1538 1539 1540 1541
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1542 1543
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
            binary_str(str): The binary prootbuf string.

        Returns:
            Program: A deserialized program desc.
        """
1556 1557
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1558
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1559 1560
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1561

D
dzhwinter 已提交
1562 1563
    @property
    def random_seed(self):
Y
yuyang18 已提交
1564 1565 1566 1567 1568 1569
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1570 1571
        return self._seed

Q
qiaolongfei 已提交
1572 1573
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1574 1575 1576
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1577 1578
        return self.desc.num_blocks()

D
dzhwinter 已提交
1579 1580 1581 1582 1583 1584
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1585 1586
    def __repr__(self):
        return str(self)
1587

Y
Yu Yang 已提交
1588
    def global_block(self):
Y
yuyang18 已提交
1589 1590 1591
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1592 1593
        return self.blocks[0]

Q
Qiao Longfei 已提交
1594
    def block(self, index):
Y
yuyang18 已提交
1595 1596 1597 1598 1599 1600 1601 1602
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1603 1604
        return self.blocks[index]

Y
Yu Yang 已提交
1605
    def current_block(self):
Y
yuyang18 已提交
1606 1607 1608 1609
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1610 1611
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1612
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1623
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1624 1625 1626
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1627 1628 1629 1630 1631
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1632 1633 1634 1635 1636
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1637 1638
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1639
    def sync_with_cpp(self):
Y
yuyang18 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1650 1651 1652 1653 1654
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1655 1656
    def copy_param_info_from(self, other):
        """
1657
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1658

Y
yuyang18 已提交
1659 1660 1661
        Notes: This is a very low level API. Users should not invoke it
        directly.

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1677 1678 1679
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1680

Y
yuyang18 已提交
1681 1682 1683
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1701
    def list_vars(self):
Y
yuyang18 已提交
1702 1703 1704 1705 1706 1707
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1708 1709 1710 1711
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1712

Y
Yu Yang 已提交
1713
class Parameter(Variable):
1714 1715 1716 1717 1718 1719
    """
    Parameter is derived from Variable. A parameter is a persistable 
    Variable, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of 
    its parameters.

1720
    Relative to a general Variable, a Parameter has several its own
1721 1722
    member variables:

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1735 1736
    """

Y
Yu Yang 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1747 1748 1749

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1750 1751 1752 1753
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1754 1755
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1756
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1757

W
wanghaoshuang 已提交
1758
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1759

F
fengjiayi 已提交
1760 1761 1762
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1763 1764 1765
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1766

F
update  
fengjiayi 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1781
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1782 1783 1784 1785 1786
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1787 1788 1789 1790
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1791

Y
Yu Yang 已提交
1792
# program is a global instance.
Y
Yu Yang 已提交
1793 1794
_main_program_ = Program()
_startup_program_ = Program()
1795

1796

1797
def default_startup_program():
Y
Yu Yang 已提交
1798
    """
Y
yuyang18 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1808

Y
Yu Yang 已提交
1809 1810 1811
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1812
    return _startup_program_
1813

1814

1815
def default_main_program():
Y
Yu Yang 已提交
1816
    """
Y
yuyang18 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1826

Y
Yu Yang 已提交
1827 1828 1829
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1830
    return _main_program_
Y
Yu Yang 已提交
1831 1832 1833 1834 1835


def switch_main_program(program):
    """
    Switch the main program to a new program.
1836

Y
Yu Yang 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1851
    Switch the startup program to a new program
Y
Yu Yang 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
1867 1868 1869
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
1870

Y
Yu Yang 已提交
1871
    Examples:
Y
yuyang18 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
1882

Y
Yu Yang 已提交
1883
    Examples:
Y
yuyang18 已提交
1884 1885 1886 1887 1888 1889

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
1890

Y
Yu Yang 已提交
1891
    Args:
Y
yuyang18 已提交
1892
        main_program(Program): New main program inside `with` statement.
1893
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1907 1908 1909 1910


def get_var(name, program=None):
    """
Y
yuyang18 已提交
1911 1912
    Get a variable by name from the global block of a program.
    
X
xuwei06 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
    Args:
        name(str): name of the variable
        program(Program|None): program object.
             If None, default_global_program() will be used.

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1924
    assert isinstance(program, Program)
X
xuwei06 已提交
1925 1926

    return program.global_block().var(name)