gpu_profiling_en.rst 10.4 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5
====================
Tune GPU Performance 
====================

..  contents::
L
liaogang 已提交
6

L
liaogang 已提交
7
This tutorial will guide you step-by-step through how to conduct profiling and performance tuning using built-in timer, **nvprof** and **nvvp**.
L
liaogang 已提交
8 9 10 11 12 13

- What is profiling?
- Why we need profiling?
- How to do profiling?
- Profile tools
- Hands-on Tutorial
L
liaogang 已提交
14
- Profiling tips
L
liaogang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

What's profiling?
=================
In software engineering, profiling is a form of dynamic program analysis that measures the space (memory) or time
complexity of a program, the usage of particular instructions, or the frequency and duration of function calls.
Most commonly, profiling information serves to aid program optimization.

Briefly, profiler is used to measure application performance. Program analysis tools are extremely important for
understanding program behavior. Simple profiling can tell you that how long does an operation take? For advanced
profiling, it can interpret why does an operation take a long time?

Why we need profiling?
======================
Since training deep neural network typically take a very long time to get over, performance is gradually becoming
the most important thing in deep learning field. The first step to improve performance is to understand what parts
30
are slow.  There is no point in improving performance of a region which doesn’t take much time!
L
liaogang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


How to do profiling?
====================
To achieve maximum performance, there are five steps you can take to reach your goals.

- Profile the code
- Find the slow parts
- Work out why they’re slow
- Make them fast
- Profile the code again

Usually, processor has two key performance limits include float point throughput and
memory throughput. For GPU,  it also need more parallelism to fulfill its potential.
This is why they can be so fast.

Profiler Tools
==============
For general GPU profiling, a bunch of tools are provided from both NVIDIA and third party.

L
liaogang 已提交
51
**nvprof** is Nvidia profiler and **nvvp** is (GUI based) Nvidia visual profiler.
L
liaogang 已提交
52 53 54
In this tutorial, we will focus on nvprof and nvvp.

:code:`test_GpuProfiler` from :code:`paddle/math/tests` directory will be used to evaluate
55
above profilers.
L
liaogang 已提交
56

L
Luo Tao 已提交
57
.. literalinclude:: ../../../../paddle/math/tests/test_GpuProfiler.cpp
L
liaogang 已提交
58
   :language: c++
59
   :lines: 137-151
L
liaogang 已提交
60
   :linenos:
L
liaogang 已提交
61

L
liaogang 已提交
62
The above code snippet includes two methods, you can use any of them to profile the regions of interest.
L
liaogang 已提交
63

L
liaogang 已提交
64
1. :code:`REGISTER_TIMER_INFO` is a built-in timer wrapper which can calculate the time overhead of both cpu functions and cuda kernels.
65

L
liaogang 已提交
66 67 68
2. :code:`REGISTER_GPU_PROFILER` is a general purpose wrapper object of :code:`cudaProfilerStart` and :code:`cudaProfilerStop` to avoid
program crashes when CPU version of PaddlePaddle invokes them.

L
liaogang 已提交
69
You can find more details about how to use both of them in the next session.
L
liaogang 已提交
70 71 72 73

Hands-on Approach
=================

L
liaogang 已提交
74 75
Built-in Timer
--------------
L
liaogang 已提交
76

L
liaogang 已提交
77 78 79 80
To enable built-in timer in PaddlePaddle, first you have to add :code:`REGISTER_TIMER_INFO` into the regions of you interest.
Then, all information could be stamped in the console via :code:`printStatus` or :code:`printAllStatus` function.
As a simple example, consider the following:

L
liaogang 已提交
81
1. Add :code:`REGISTER_TIMER_INFO` and :code:`printAllStatus` functions (see the emphasize-lines).
L
liaogang 已提交
82

L
Luo Tao 已提交
83
    .. literalinclude:: ../../../../paddle/math/tests/test_GpuProfiler.cpp
L
liaogang 已提交
84
        :language: c++
85 86
        :lines: 137-151
        :emphasize-lines: 8-12,14
L
liaogang 已提交
87 88 89 90 91 92 93 94 95
        :linenos:

2. Configure cmake with **WITH_TIMER** and recompile PaddlePaddle.

    .. code-block:: bash

        cmake .. -DWITH_TIMER=ON
        make

96
3. Execute your code and observe the results (see the emphasize-lines).
L
liaogang 已提交
97 98 99 100

    .. code-block:: bash
        :emphasize-lines: 1,12-15

101 102 103 104 105 106 107 108
        > ./paddle/math/tests/test_GpuProfiler
        I1117 11:13:42.313065 2522362816 Util.cpp:155] commandline: ./paddle/math/tests/test_GpuProfiler
        I1117 11:13:42.845065 2522362816 Util.cpp:130] Calling runInitFunctions
        I1117 11:13:42.845208 2522362816 Util.cpp:143] Call runInitFunctions done.
        [==========] Running 1 test from 1 test case.
        [----------] Global test environment set-up.
        [----------] 1 test from Profiler
        [ RUN      ] Profiler.BilinearFwdBwd
L
liaogang 已提交
109
        I1117 11:13:42.845310 2522362816 test_GpuProfiler.cpp:114] Enable GPU Profiler Stat: [testBilinearFwdBwd] "numSamples = 10, channels = 16, im
110 111 112 113 114 115 116 117 118 119 120
        gSizeX = 64, imgSizeY = 64"
        I1117 11:13:42.850154 2522362816 ThreadLocal.cpp:37] thread use undeterministic rand seed:20659751
        I1117 11:13:42.981501 2522362816 Stat.cpp:130] ======= StatSet: [GlobalStatInfo] status ======
        I1117 11:13:42.981539 2522362816 Stat.cpp:133] Stat=testBilinearFwdBwd     total=136.141    avg=136.141    max=136.141    min=136.141   count=1
        I1117 11:13:42.981572 2522362816 Stat.cpp:141] ======= BarrierStatSet status ======
        I1117 11:13:42.981575 2522362816 Stat.cpp:154] --------------------------------------------------
        [       OK ] Profiler.BilinearFwdBwd (136 ms)
        [----------] 1 test from Profiler (136 ms total)

        [----------] Global test environment tear-down
        [==========] 1 test from 1 test case ran. (136 ms total)
L
liaogang 已提交
121 122 123 124
        [  PASSED  ] 1 test.

nvprof profiler
---------------
L
liaogang 已提交
125

L
liaogang 已提交
126 127 128 129
To use this command line profiler **nvprof**, you can simply issue the following command:

1. Add :code:`REGISTER_GPU_PROFILER` function (see the emphasize-lines).

L
Luo Tao 已提交
130
    .. literalinclude:: ../../../../paddle/math/tests/test_GpuProfiler.cpp
L
liaogang 已提交
131
        :language: c++
132
        :lines: 137-151
L
liaogang 已提交
133
        :emphasize-lines: 6-7
L
liaogang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
        :linenos:

2. Configure cmake with **WITH_PROFILER** and recompile PaddlePaddle.

    .. code-block:: bash

        cmake .. -DWITH_PROFILER=ON
        make

3. Use Nvidia profiler **nvprof** to profile the binary.

    .. code-block:: bash

        nvprof  ./paddle/math/tests/test_GpuProfiler
L
liaogang 已提交
148 149 150

Then, you can get the following profiling result:

L
liaogang 已提交
151
.. code-block:: bash
L
liaogang 已提交
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    ==78544== Profiling application: ./paddle/math/tests/test_GpuProfiler
    ==78544== Profiling result:
    Time(%)     Time     Calls       Avg       Min       Max  Name
    27.60%  9.6305ms         5  1.9261ms  3.4560us  6.4035ms  [CUDA memcpy HtoD]
    26.07%  9.0957ms         1  9.0957ms  9.0957ms  9.0957ms  KeBilinearInterpBw
    23.78%  8.2977ms         1  8.2977ms  8.2977ms  8.2977ms  KeBilinearInterpFw
    22.55%  7.8661ms         2  3.9330ms  1.5798ms  6.2863ms  [CUDA memcpy DtoH]

    ==78544== API calls:
    Time(%)     Time     Calls       Avg       Min       Max  Name
    46.85%  682.28ms         8  85.285ms  12.639us  682.03ms  cudaStreamCreateWithFlags
    39.83%  580.00ms         4  145.00ms     302ns  550.27ms  cudaFree
    9.82%   143.03ms         9  15.892ms  8.7090us  142.78ms  cudaStreamCreate
    1.23%   17.983ms         7  2.5690ms  23.210us  6.4563ms  cudaMemcpy
    1.23%   17.849ms         2  8.9247ms  8.4726ms  9.3768ms  cudaStreamSynchronize
    0.66%   9.5969ms         7  1.3710ms  288.43us  2.4279ms  cudaHostAlloc
    0.13%   1.9530ms        11  177.54us  7.6810us  591.06us  cudaMalloc
    0.07%   1.0424ms         8  130.30us  1.6970us  453.72us  cudaGetDevice
    0.04%   527.90us        40  13.197us     525ns  253.99us  cudaEventCreateWithFlags
    0.03%   435.73us       348  1.2520us     124ns  42.704us  cuDeviceGetAttribute
    0.03%   419.36us         1  419.36us  419.36us  419.36us  cudaGetDeviceCount
    0.02%   260.75us         2  130.38us  129.32us  131.43us  cudaGetDeviceProperties
    0.02%   222.32us         2  111.16us  106.94us  115.39us  cudaLaunch
    0.01%   214.06us         4  53.514us  28.586us  77.655us  cuDeviceGetName
    0.01%   115.45us         4  28.861us  9.8250us  44.526us  cuDeviceTotalMem
    0.01%   83.988us         4  20.997us     578ns  77.760us  cudaSetDevice
    0.00%   38.918us         1  38.918us  38.918us  38.918us  cudaEventCreate
    0.00%   34.573us        31  1.1150us     279ns  12.784us  cudaDeviceGetAttribute
    0.00%   17.767us         1  17.767us  17.767us  17.767us  cudaProfilerStart
    0.00%   15.228us         2  7.6140us  3.5460us  11.682us  cudaConfigureCall
    0.00%   14.536us         2  7.2680us  1.1490us  13.387us  cudaGetLastError
    0.00%   8.6080us        26     331ns     173ns     783ns  cudaSetupArgument
    0.00%   5.5470us         6     924ns     215ns  2.6780us  cuDeviceGet
    0.00%   5.4090us         6     901ns     328ns  3.3320us  cuDeviceGetCount
    0.00%   4.1770us         3  1.3920us  1.0630us  1.8300us  cuDriverGetVersion
    0.00%   3.4650us         3  1.1550us  1.0810us  1.2680us  cuInit
L
liaogang 已提交
189 190 191 192 193 194 195
    0.00%      830ns         1     830ns     830ns     830ns  cudaRuntimeGetVersion


nvvp profiler
-------------

For visual profiler **nvvp**, you can either import the output of :code:`nvprof –o ...` or
L
liaogang 已提交
196 197
run application through GUI.

L
liaogang 已提交
198 199
**Note: nvvp also support CPU profiling** (Click the box in nvvp to enable profile execution on CPU).

L
liaogang 已提交
200 201
..  image:: nvvp1.png
    :align: center
L
liaogang 已提交
202
    :scale: 33%
L
liaogang 已提交
203

L
liaogang 已提交
204
From the perspective of kernel functions, **nvvp** can even illustrate why does an operation take a long time?
L
liaogang 已提交
205
As shown in the following figure, kernel's block usage, register usage and shared memory usage from :code:`nvvp`
L
liaogang 已提交
206
allow us to fully utilize all warps on the GPU.
L
liaogang 已提交
207 208 209

..  image:: nvvp2.png
    :align: center
L
liaogang 已提交
210
    :scale: 33%
L
liaogang 已提交
211

L
liaogang 已提交
212
From the perspective of application, **nvvp** can give you some suggestions to address performance bottleneck.
L
liaogang 已提交
213 214 215 216
For instance, some advice in data movement and compute utilization from the below figure can guide you to tune performance.

..  image:: nvvp3.png
    :align: center
L
liaogang 已提交
217
    :scale: 33%
L
liaogang 已提交
218 219 220

..  image:: nvvp4.png
    :align: center
L
liaogang 已提交
221
    :scale: 33%
L
liaogang 已提交
222 223 224 225

Profiling tips
==============

L
liaogang 已提交
226 227
- The **nvprof** and **nvvp** output is a very good place to start.
- The timeline is a good place to go next.
L
liaogang 已提交
228 229 230 231 232 233 234
- Only dig deep into a kernel if it’s taking a significant amount of your time.
- Where possible, try to match profiler output with theory.
    1) For example, if I know I’m moving 1GB, and my kernel takes 10ms, I expect the profiler to report 100GB/s.
    2) Discrepancies are likely to mean your application isn’t doing what you thought it was.
- Know your hardware: If your GPU can do 6 TFLOPs, and you’re already doing 5.5 TFLOPs, you won’t go much faster!


L
liaogang 已提交
235
Profiling is a key step in optimization. Sometimes quite simple changes can lead to big improvements in performance.
L
liaogang 已提交
236 237 238 239 240
Your mileage may vary!

Reference
=========
Jeremy Appleyard, `GPU Profiling for Deep Learning <http://www.robots.ox.ac.uk/~seminars/seminars/Extra/2015_10_08_JeremyAppleyard.pdf>`_, 2015