eager_op_function_generator.cc 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <fstream>
#include <iostream>
#include <set>
#include <string>
#ifndef _WIN32
#include <unistd.h>
#endif

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#endif
#include "paddle/fluid/pybind/op_function_generator.h"

W
wanghuancoder 已提交
35
std::set<std::string> gen_list = {
36 37 38 39 40 41
    "sigmoid", "matmul_v2", "reduce_sum", "elementwise_add", "rsqrt",
    "multihead_matmul", "addmm", "gru", "round", "push_dense", "rank_attention",
    "fused_embedding_fc_lstm", "where_index", "bicubic_interp", "arg_min",
    "tile", "bilinear_tensor_product", "ctc_align",
    "pow2_decay_with_linear_warmup", "marker", "split", "fc",
    "load", "elementwise_max", "adadelta",
W
wanghuancoder 已提交
42
    "tan",
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    "fsp", "where", "logical_xor", "multiclass_nms3", "one_hot_v2",
    "sequence_softmax", "affine_channel", "triangular_solve",
    "sequence_topk_avg_pooling", "space_to_depth", "reverse",
    "fused_embedding_eltwise_layernorm", "expand_v2", "lgamma", "solve",
    "deformable_psroi_pooling", "instance_norm", "decode_jpeg", "gather_nd",
    "reduce_prod", "matrix_rank", "asin", "lstmp", "iou_similarity",
    "huber_loss", "one_hot", "sequence_slice", "lookup_table", "softplus",
    "depthwise_conv2d", "fused_fc_elementwise_layernorm",
    "sigmoid_cross_entropy_with_logits", "exp", "scatter", "equal_all",
    "searchsorted", "fusion_squared_mat_sub", "unique", "log", "conv_shift",
    "smooth_l1_loss", "linear_interp_v2",
    "temporal_shift", "nce", "mv", "proximal_gd", "memcpy_h2d",
    "add_position_encoding", "cosh", "hash", "grad_add", "sign", "prelu",
    "linspace", "fill_diagonal", "logsigmoid", "load_combine", "fetch_v2",
    "randperm", "sequence_scatter", "partial_sum", "relu6", "conv3d",
    "lstm_unit", "not_equal", "transpose2", "uniform_random_batch_size_like",
    "unfold", "lrn", "softmax_with_cross_entropy", "isfinite_v2", "bernoulli",
    "max_pool3d_with_index", "gaussian_random", "flatten2",
    "cvm", "adamax", "masked_select", "range", "bitwise_not", "trace",
    "multinomial", "modified_huber_loss", "roll", "squared_l2_distance",
    "conv3d_transpose", "share_data", "fake_quantize_abs_max",
    "unique_with_counts", "fill", "concat", "fill_zeros_like",
    "hierarchical_sigmoid", "isinf_v2", "squeeze", "multiclass_nms2",
    "bpr_loss", "fft_c2c", "bicubic_interp_v2", "reshape", "coalesce_tensor",
    "roi_align", "reshape2", "reduce_any", "unstack", "scatter_nd_add",
    "sequence_reshape", "bilateral_slice", "fill_any_like", "empty",
    "pad_constant_like", "pool2d", "size", "imag", "eigh", "stack",
W
wanghuancoder 已提交
70
    "dgc_momentum",
71 72 73 74 75 76 77 78
    "generate_proposals_v2", "bitwise_or", "gru_unit",
    "sampling_id", "unsqueeze2",
    "sequence_enumerate", "fusion_seqconv_eltadd_relu", "bce_loss",
    "generate_proposal_labels", "im2sequence", "isinf", "adagrad",
    "linear_chain_crf", "retinanet_target_assign", "fusion_group",
    "teacher_student_sigmoid_loss", "random_crop", "lookup_table_v2",
    "detection_map", "l1_norm", "sqrt", "fused_elemwise_activation",
    "slogdeterminant", "share_buffer", "bitwise_and", "diag_embed", "unbind",
W
wanghuancoder 已提交
79
    "dropout",
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    "beam_search", "log_loss", "greater_than", "kron", "sigmoid_focal_loss",
    "rmsprop", "conv2d", "uniform_random_inplace", "maxout", "linear_interp",
    "auc", "logical_or",
    "acos", "unpool", "cumprod", "sample_logits", "crop_tensor",
    "deformable_conv", "generate_mask_labels", "locality_aware_nms",
    "expand_as", "matrix_power", "greater_equal", "generate_proposals",
    "bilinear_interp", "inplace_abn", "softshrink", "mul", "data_norm",
    "get_tensor_from_selected_rows", "spp", "floor", "gelu",
    "retinanet_detection_output", "push_dense", "silu", "sequence_erase",
    "real", "nearest_interp_v2", "dgc_clip_by_norm", "squeeze2",
    "strided_slice", "conj", "precision_recall", "save",
    "fusion_seqexpand_concat_fc", "fake_quantize_range_abs_max",
    "depthwise_conv2d_transpose", "positive_negative_pair", "square",
    "var_conv_2d", "log1p", "fused_softmax_mask_upper_triangle", "clip_by_norm",
    "atan2", "box_decoder_and_assign", "fft_r2c", "roi_pool", "overlap_add",
    "fill_constant_batch_size_like", "fill_any", "dequantize_log",
    "max_pool2d_with_index", "pad3d", "norm", "viterbi_decode", "mish",
    "box_coder", "flatten", "elementwise_mod", "margin_cross_entropy",
    "logical_and", "pow", "stanh", "label_smooth", "merged_momentum",
    "ascend_trigger", "fused_feedforward", "rpn_target_assign",
    "roi_perspective_transform", "expand", "prroi_pool", "pool3d", "memcpy",
    "distribute_fpn_proposals", "frame", "bincount", "shape", "group_norm",
    "resnet_unit", "sequence_expand_as", "cos_sim", "eigvals", "save_combine",
    "class_center_sample", "read_file", "isfinite", "arg_max", "equal",
    "fake_dequantize_max_abs", "qr", "anchor_generator", "layer_norm",
    "merge_selected_rows", "less_equal",
    "fusion_lstm", "lars_momentum", "hard_sigmoid", "isnan",
    "elementwise_floordiv", "correlation", "histogram", "gather_tree",
    "segment_pool", 
    "fusion_repeated_fc_relu", "nop",
    "expand_as_v2", "filter_by_instag", "nll_loss", "dot", "scale", "ncclBcast",
    "shuffle_batch", "ncclReduce", "diag", "multiplex", "leaky_relu",
W
wanghuancoder 已提交
112
    "allclose",
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    "elementwise_pow", "prior_box", "p_norm", "unique_consecutive", "lod_reset",
    "pad", "sequence_conv", "log10", "set_value", "bitwise_xor", "center_loss",
    "randint", "attention_lstm", "uniform_random", "slice", "meshgrid",
    "hard_swish", "sin", "mean_iou", "pad2d", "inverse", "spectral_norm",
    "shuffle_channel", "psroi_pool", "seed", "ceil", "eig", "reduce_min", "cos",
    "ncclAllReduce", "cudnn_lstm", "digamma", "assign_value", "increment",
    "tdm_sampler", "fused_softmax_mask", "sequence_reverse", "eigvalsh",
    "diagonal", "trunc", "log2", "tanh", "yolov3_loss", "graph_send_recv",
    "atan", "less_than", "unsqueeze", "crf_decoding", "log_softmax", "ftrl",
    "matrix_nms", "top_k_v2", "cast", "tanh_shrink", "hard_shrink",
    "multiclass_nms", "fusion_transpose_flatten_concat", "sequence_unpad",
    "fused_elemwise_add_activation", "frobenius_norm", "crop", "cross_entropy2",
    "skip_layernorm", "tdm_child", "fused_embedding_seq_pool", "erf",
    "conv2d_inception_fusion", "trilinear_interp", "logsumexp",
    "fusion_seqpool_concat", "alloc_float_status", "sequence_concat",
    "fusion_seqpool_cvm_concat", "similarity_focus", "argsort",
W
wanghuancoder 已提交
129
    "sequence_expand",
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    "fused_bn_add_activation", "bilinear_interp_v2", "clip",
    "deformable_conv_v1", "hinge_loss", "determinant", "conv2d_transpose",
    "memcpy_d2h", "softsign",
    "broadcast_tensors", "grid_sampler", "fft_c2r", "pyramid_hash",
    "multi_dot", "sequence_pool", "transpose", "top_k", "dist", "affine_grid",
    "gaussian_random_batch_size_like", "fake_channel_wise_dequantize_max_abs",
    "reciprocal", "sequence_mask", "fill_diagonal_tensor", "abs",
    "partial_concat", "elu", "index_select", "row_conv", "cross",
    "elementwise_mul", "decayed_adagrad", "bipartite_match",
    "fake_quantize_moving_average_abs_max", "mine_hard_examples",
    "target_assign", "lstm", "truncated_gaussian_random", "match_matrix_tensor",
    "elementwise_div", "kldiv_loss", "cumsum", "sum", "proximal_adagrad",
    "shard_index", "selu", "mean", "gumbel_softmax", "sequence_pad",
    "tree_conv", "assign", "flatten_contiguous_range", "tril_triu", "brelu",
    "celu", "reduce_mean", "sinh", "rank_loss", "reduce_max", "fusion_gru",
    "fill_zeros_like2", "expm1", "squared_l2_norm", "elementwise_sub",
    "margin_rank_loss", "faster_tokenizer", "relu", "is_empty", "reduce_all",
    "edit_distance", "bmm", "yolo_box", "soft_relu", "density_prior_box", "eye",
    "swish", "cross_entropy", "dpsgd", "cholesky", "batch_fc", "nearest_interp",
    "gather", "trilinear_interp_v2", "box_clip", "isnan_v2", "softmax",
    "conv2d_fusion", "fused_batch_norm_act",
    "index_sample", "elementwise_min", "logical_not", "collect_fpn_proposals",
    "pixel_shuffle", "thresholded_relu", "polygon_box_transform",
    "lookup_table_dequant", "warpctc", "fake_channel_wise_quantize_abs_max",
    "dequantize_abs_max", "svd", "flip"};
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

// clang-format off
const char* OUT_INITIALIZER_TEMPLATE =
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase("auto_"+std::to_string(VarBaseUniqueNameID++)+"_"))}})";
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";

const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    if (%s != nullptr) {
      ins["%s"] = {%s};
    }
)";

const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    if (%s.size() != 0) {
      ins["%s"] = %s;
    }
)";

const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
)";

const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
)";
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

const char* IN_VAR_TYPE = R"(py::handle)";
const char* IN_VAR_LIST_TYPE = R"(py::handle)";

const char* OUT_VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* OUT_VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";

const char* CAST_VAR_TEMPLATE = R"(
    auto %s = GetEagerTensorFromArgs("%s", "%s", args, %d, %s);)";

const char* CAST_VAR_LIST_TEMPLATE = R"(
    auto %s = GetEagerTensorListFromArgs("%s", "%s", args, %d, %s);)";

const char* CAST_SIZE_T_TEMPLATE = R"(
    auto %s = GetUnsignedLongFromArgs("%s", "%s", args, %d, %s);)";

const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";

const char* HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT = R"(
    if (ins.count("%s") && outs.count("%s")) {
      HandleViewBetweenInputAndOutput(ins["%s"][0], outs["%s"][0]);
    })";

const char* OP_FUNCTION_TEMPLATE =
R"(
static PyObject * %s(PyObject *self, PyObject *args, PyObject *kwargs)
{
  PyThreadState *tstate = nullptr;
  try
  {
    %s
    framework::AttributeMap attrs;
    ConstructAttrMapFromPyArgs("%s", args, %d, PyTuple_GET_SIZE(args) , attrs);
    tstate = PyEval_SaveThread();
    %s
    PyEval_RestoreThread(tstate);
    tstate = nullptr;
    %s
  }
  catch(...) {
    if (tstate) {
      PyEval_RestoreThread(tstate);
    }
    ThrowExceptionToPython(std::current_exception());
    return nullptr;
  }
})";

const char* PYBIND_ITEM_TEMPLATE = R"(  {"%s", (PyCFunction)(void(*)(void))%s, METH_VARARGS | METH_KEYWORDS, "C++ interface function for %s in dygraph."},)";

// clang-format on
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
  return op_ins_map[op_type].count(in_name);
}

static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
}

static inline bool FindViewOpMap(const std::string& op_type) {
  return view_op_map.count(op_type);
}

static inline std::string TempName(const std::string& name) {
  return name + '_';
}

std::string GenerateOpFunctionsBody(
    const paddle::framework::proto::OpProto* op_proto, std::string func_name,
    bool use_inplace_strategy = false,
    std::map<std::string, std::string> inplace_map = {}) {
  auto& op_type = op_proto->type();
  std::string input_args = "";
  std::string call_api_str = "auto out = " + op_type + "_dygraph_function(";
  std::string ins_initializer_with_null = "";
  std::string py_arg = "";
  int arg_idx = 0;
  int input_args_num = 0;
  std::string ins_cast_str = "";
  std::string view_strategy_str = "";
  for (auto& input : op_proto->inputs()) {
    auto& in_name = input.name();
    // skip those dispensable inputs, like ResidualData in conv2d
    if (input.dispensable() && !FindInsMap(op_type, in_name)) {
      continue;
    }
    const auto in_type = input.duplicable() ? IN_VAR_LIST_TYPE : IN_VAR_TYPE;
    auto input_arg =
        paddle::string::Sprintf(ARG_TEMPLATE, in_type, TempName(in_name));
    input_args += input_arg;
    input_args += ",";
    input_args_num++;
    const auto in_cast_type =
        input.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
    auto dispensable = input.dispensable() ? "true" : "false";
    ins_cast_str += paddle::string::Sprintf(in_cast_type, in_name, op_type,
                                            in_name, arg_idx++, dispensable);

W
wanghuancoder 已提交
299
    call_api_str += in_name + ", ";
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  }

  if (!input_args.empty() && input_args.back() == ',') {
    input_args.pop_back();
  }

  // Generate outs initializer
  std::string outs_initializer = "{";
  std::string outs_initializer_with_null = "";
  std::string return_str = "";

  int outs_num = 0;
  for (auto& output : op_proto->outputs()) {
    auto& out_name = output.name();

    // skip those dispensable oututs
    if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
      continue;
    }
    const auto out_type =
        output.duplicable() ? OUT_VAR_LIST_TYPE : OUT_VAR_TYPE;

    if (FindPassingOutsMap(op_type, out_name)) {
      if (input_args != "") {
        input_args += ",";
      }
      input_args += out_type;
      input_args += out_name;
      input_args_num++;

      if (output.dispensable()) {
        const auto out_template =
            output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        outs_initializer_with_null +=
            paddle::string::Sprintf(out_template, out_name, out_name);
      } else {
        const auto out_template = output.duplicable()
                                      ? INPUT_LIST_INITIALIZER_TEMPLATE
                                      : INPUT_INITIALIZER_TEMPLATE;
        outs_initializer +=
            paddle::string::Sprintf(out_template, out_name, out_name);
        outs_initializer += ",";
      }

      const auto in_cast_type =
          output.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
      auto dispensable = output.dispensable() ? "true" : "false";
      ins_cast_str += paddle::string::Sprintf(in_cast_type, out_name, op_type,
                                              out_name, arg_idx++, dispensable);
W
wanghuancoder 已提交
350 351

      // call_api_str += out_name + ", ";
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    } else {
      // There are few Operators that have duplicable output, like `Out` in
      // split op. We need to specify the number of variables for the
      // duplicable output, as the argument OutNum;
      if (output.duplicable()) {
        if (input_args != "") {
          input_args += ",";
        }
        auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
        input_args += ARG_OUT_NUM_TYPE;
        input_args += out_num_str;
        input_args_num++;
        outs_initializer += paddle::string::Sprintf(
            OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);

        auto dispensable = output.dispensable() ? "true" : "false";
        ins_cast_str +=
            paddle::string::Sprintf(CAST_SIZE_T_TEMPLATE, out_num_str, op_type,
                                    out_num_str, arg_idx++, dispensable);
        call_api_str += out_num_str + ", ";
      } else {
        outs_initializer +=
            paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
      }
      outs_initializer += ",";
    }

    // return_str += paddle::string::Sprintf(return_template, out_name);
    // return_str += ",";
    outs_num += 1;
  }
  call_api_str += "attrs);";
  if (outs_initializer.back() == ',') {
    outs_initializer.pop_back();
    // return_str.pop_back();
  }
  outs_initializer += "}";
  if (FindViewOpMap(op_type)) {
    std::string viwe_input_name = view_op_map[op_type].first;
    std::string viwe_output_name = view_op_map[op_type].second;
    view_strategy_str += paddle::string::Sprintf(
        HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT, viwe_input_name, viwe_output_name,
        viwe_input_name, viwe_output_name);
  }
W
wanghuancoder 已提交
396 397 398

  return_str = "return ToPyObject(out);";

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
  std::string function_args = "";
  if (input_args == "") {
    function_args = FUNCTION_ARGS_NO_INPUT;
  } else {
    function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
  }

  // generate op funtcion body
  auto op_function_str = paddle::string::Sprintf(
      OP_FUNCTION_TEMPLATE, func_name, ins_cast_str, op_type, input_args_num,
      call_api_str, return_str);

  return op_function_str;
}

static std::tuple<std::vector<std::string>, std::vector<std::string>>
GenerateOpFunctions() {
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

  std::vector<std::string> op_function_list, bind_function_list;
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    // if the pten lib contains op kernel, we still generate ops method
    if (!all_kernels.count(op_type) &&
        !pten::KernelFactory::Instance().HasCompatiblePtenKernel(op_type)) {
      continue;
    }
    if (!gen_list.count(op_type)) {
      continue;
    }
    std::string func_name = "eager_api_" + op_type;
    std::string op_function_str = GenerateOpFunctionsBody(op_proto, func_name);

    // generate pybind item
    auto bind_function_str = paddle::string::Sprintf(
        PYBIND_ITEM_TEMPLATE, op_type, func_name, op_type);

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
  }
  return std::make_tuple(op_function_list, bind_function_list);
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

#ifdef PADDLE_WITH_ASCEND_CL
  auto ascend_ptr = paddle::framework::AscendInstance::GetInstance();
  ascend_ptr->InitGEForUT();
#endif

  std::vector<std::string> headers{
      "\"pybind11/detail/common.h\"",
      "\"paddle/fluid/pybind/op_function_common.h\"",
      "\"paddle/fluid/pybind/exception.h\"", "<Python.h>"};

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

  out << "\n\n";

  auto op_funcs = GenerateOpFunctions();

  out << "namespace paddle {\n"
      << "namespace pybind {\n\n";
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";

  out << "static PyMethodDef ExtestMethods[] = {\n"
      << paddle::string::join_strings(std::get<1>(op_funcs), '\n')
      << "\n  {nullptr,nullptr,0,nullptr}"
      << "};\n\n";

  out << "inline void BindEagerOpFunctions(pybind11::module *module) {\n"
490
      << "  InitOpsAttrTypeMap();\n"
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
      << "  auto m = module->def_submodule(\"ops\");\n"
      << "  if (PyModule_AddFunctions(m.ptr(), ExtestMethods) < 0) {\n"
      << "    PADDLE_THROW(platform::errors::Fatal (\"Add functions to "
         "core.eager.ops failed!\"));\n"
      << "  }\n\n"
      << "}\n\n"
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();

#ifdef PADDLE_WITH_ASCEND_CL
  ge::GEFinalize();
#endif

  return 0;
}