cost_model.py 3.0 KB
Newer Older
H
Huihuang Zheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.static as static
import numpy as np
H
huangxu96 已提交
18 19
import json
import os
H
Huihuang Zheng 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
from paddle.fluid import core


class CostModel():
    def __init__(self):
        pass

    def build_program(self):
        paddle.enable_static()

        main_program = static.Program()
        startup_program = static.Program()
        with static.program_guard(
                main_program=main_program, startup_program=startup_program):
            data = paddle.static.data(
                name='X', shape=[None, 1], dtype='float32')
            hidden = paddle.static.nn.fc(data, 10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

        print("main program is: {}".format(main_program))

        return startup_program, main_program

    def profile_measure(self,
                        startup_program,
                        main_program,
                        device='gpu',
H
huangxu96 已提交
48
                        fetch_cost_list=['time']):
H
Huihuang Zheng 已提交
49 50 51 52 53 54 55 56 57 58 59 60

        place = paddle.set_device('gpu')
        x = np.random.random(size=(10, 1)).astype('float32')
        exe = paddle.static.Executor(place)

        exe.run(startup_program)
        paddle.fluid.profiler.start_profiler("All")
        exe.run(main_program, feed={"X": x}, fetch_list=[])

        cost_model = core.CostModel()
        cost_data = cost_model.ProfileMeasure(device)

H
huangxu96 已提交
61 62 63 64 65 66 67 68
    def static_cost_data(self):
        static_cost_data_path = os.path.join(
            os.path.dirname(__file__), "static_op_benchmark.json")
        with open(static_cost_data_path, 'r') as load_f:
            load_dict = json.load(load_f)
        self._static_cost_data = load_dict
        # return all static cost data
        return load_dict
H
Huihuang Zheng 已提交
69

H
huangxu96 已提交
70 71 72 73 74 75
    def get_static_op_time(self, op_name, forward=True, dtype="float32"):
        # if forward is True, return op forward time, otherwise return op backward time.
        if op_name == None:
            raise ValueError(
                'op_name should not be empty when you want to get static op time'
            )
H
Huihuang Zheng 已提交
76

H
huangxu96 已提交
77 78 79 80 81 82 83 84
        op_cost = {}
        for op_data in self._static_cost_data:
            if (op_data["op"] == op_name) and (dtype in op_data["config"]):
                if (forward):
                    op_cost["op_time"] = op_data["paddle_gpu_time"]
                else:
                    op_cost["op_time"] = op_data["paddle_gpu_time_backward"]
                op_cost["config"] = op_data["config"]
H
Huihuang Zheng 已提交
85

H
huangxu96 已提交
86
        return op_cost