math_function.cu 12.5 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#define EIGEN_USE_GPU
Y
Fix CI  
Yu Yang 已提交
16
#include "paddle/framework/data_type.h"
Q
qijun 已提交
17
#include "paddle/operators/math/math_function.h"
18
#include "paddle/operators/math/math_function_impl.h"
Q
qijun 已提交
19

Q
qijun 已提交
20 21 22 23 24
namespace paddle {
namespace operators {
namespace math {

template <>
Q
QI JUN 已提交
25 26 27 28 29
void gemm<platform::CUDADeviceContext, float>(
    const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C) {
Q
qijun 已提交
30 31
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
32 33
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
34
  cublasOperation_t cuTransA =
Q
qijun 已提交
35
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
36
  cublasOperation_t cuTransB =
Q
qijun 已提交
37
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
38

Q
qijun 已提交
39
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
Q
QI JUN 已提交
40 41
      context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A,
      lda, &beta, C, N));
Q
qijun 已提交
42 43 44
}

template <>
Q
QI JUN 已提交
45 46 47 48 49
void gemm<platform::CUDADeviceContext, double>(
    const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA,
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C) {
Q
qijun 已提交
50 51
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
52 53
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
54
  cublasOperation_t cuTransA =
Q
qijun 已提交
55
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
56
  cublasOperation_t cuTransB =
Q
qijun 已提交
57
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
58
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
Q
QI JUN 已提交
59 60
      context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A,
      lda, &beta, C, N));
Q
qijun 已提交
61 62
}

G
guosheng 已提交
63
template <>
Q
QI JUN 已提交
64 65 66 67 68
void gemm<platform::CUDADeviceContext, float>(
    const platform::CUDADeviceContext& context, const bool transA,
    const bool transB, const int M, const int N, const int K, const float alpha,
    const float* A, const int lda, const float* B, const int ldb,
    const float beta, float* C, const int ldc) {
G
guosheng 已提交
69 70 71 72 73
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
Q
QI JUN 已提交
74 75
      context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A,
      lda, &beta, C, ldc));
G
guosheng 已提交
76 77 78
}

template <>
Q
QI JUN 已提交
79 80 81 82 83
void gemm<platform::CUDADeviceContext, double>(
    const platform::CUDADeviceContext& context, const bool transA,
    const bool transB, const int M, const int N, const int K,
    const double alpha, const double* A, const int lda, const double* B,
    const int ldb, const double beta, double* C, const int ldc) {
G
guosheng 已提交
84 85 86 87 88
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
Q
QI JUN 已提交
89 90
      context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A,
      lda, &beta, C, ldc));
G
guosheng 已提交
91 92
}

Q
qijun 已提交
93
template <>
Q
QI JUN 已提交
94 95 96 97
void matmul<platform::CUDADeviceContext, float>(
    const platform::CUDADeviceContext& context,
    const framework::Tensor& matrix_a, bool trans_a,
    const framework::Tensor& matrix_b, bool trans_b, float alpha,
98
    framework::Tensor* matrix_out, float beta) {
Q
qijun 已提交
99 100 101 102 103 104 105 106 107
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
D
dzhwinter 已提交
108
                 "Matrix must all be in CUDAPlace");
Q
qijun 已提交
109

Q
qijun 已提交
110 111 112
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];
Q
qijun 已提交
113

Q
qijun 已提交
114 115
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
116

Q
QI JUN 已提交
117
  gemm<platform::CUDADeviceContext, float>(
118 119
      context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
      matrix_b.data<float>(), beta, matrix_out->data<float>());
Q
qijun 已提交
120 121 122
}

template <>
Q
QI JUN 已提交
123 124 125 126
void matmul<platform::CUDADeviceContext, double>(
    const platform::CUDADeviceContext& context,
    const framework::Tensor& matrix_a, bool trans_a,
    const framework::Tensor& matrix_b, bool trans_b, double alpha,
127
    framework::Tensor* matrix_out, double beta) {
Q
qijun 已提交
128 129 130 131 132 133 134 135 136
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
D
dzhwinter 已提交
137
                 "Matrix must all be in CUDAPlace");
Q
qijun 已提交
138

Q
qijun 已提交
139 140 141 142 143 144
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
145

Q
QI JUN 已提交
146
  gemm<platform::CUDADeviceContext, double>(
147 148
      context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
      matrix_b.data<double>(), beta, matrix_out->data<double>());
Q
qijun 已提交
149
}
Q
qijun 已提交
150

M
Markus Kliegl 已提交
151
template <>
Q
QI JUN 已提交
152 153
void batched_gemm<platform::CUDADeviceContext, float>(
    const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA,
M
Markus Kliegl 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const float alpha, const float* A, const float* B, const float beta,
    float* C, const int batchCount, const int strideA, const int strideB) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int strideC = M * N;

  PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched(
Q
QI JUN 已提交
169 170
      context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb,
      strideB, A, lda, strideA, &beta, C, ldc, strideC, batchCount));
M
Markus Kliegl 已提交
171 172 173
}

template <>
Q
QI JUN 已提交
174 175
void batched_gemm<platform::CUDADeviceContext, double>(
    const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA,
M
Markus Kliegl 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
    const double alpha, const double* A, const double* B, const double beta,
    double* C, const int batchCount, const int strideA, const int strideB) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
  int ldc = N;
  cublasOperation_t cuTransA =
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB =
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
  const int strideC = M * N;

  PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched(
Q
QI JUN 已提交
191 192
      context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb,
      strideB, A, lda, strideA, &beta, C, ldc, strideC, batchCount));
M
Markus Kliegl 已提交
193 194
}

195
template <>
Q
QI JUN 已提交
196 197 198 199
void gemv<platform::CUDADeviceContext, float>(
    const platform::CUDADeviceContext& context, const bool trans_a, const int M,
    const int N, const float alpha, const float* A, const float* B,
    const float beta, float* C) {
200 201
  cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N;

Q
QI JUN 已提交
202 203 204
  PADDLE_ENFORCE(platform::dynload::cublasSgemv(context.cublas_handle(),
                                                cuTransA, N, M, &alpha, A, N, B,
                                                1, &beta, C, 1));
205 206 207
}

template <>
Q
QI JUN 已提交
208 209 210 211
void gemv<platform::CUDADeviceContext, double>(
    const platform::CUDADeviceContext& context, const bool trans_a, const int M,
    const int N, const double alpha, const double* A, const double* B,
    const double beta, double* C) {
212
  cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N;
Q
QI JUN 已提交
213 214 215
  PADDLE_ENFORCE(platform::dynload::cublasDgemv(context.cublas_handle(),
                                                cuTransA, N, M, &alpha, A, N, B,
                                                1, &beta, C, 1));
216 217
}

218
template <>
Q
QI JUN 已提交
219 220 221 222 223
void axpy<platform::CUDADeviceContext, float>(
    const platform::CUDADeviceContext& context, const int n, const float alpha,
    const float* x, float* y) {
  PADDLE_ENFORCE(platform::dynload::cublasSaxpy(context.cublas_handle(), n,
                                                &alpha, x, 1, y, 1));
224 225 226
}

template <>
Q
QI JUN 已提交
227 228 229 230 231
void axpy<platform::CUDADeviceContext, double>(
    const platform::CUDADeviceContext& context, const int n, const double alpha,
    const double* x, double* y) {
  PADDLE_ENFORCE(platform::dynload::cublasDaxpy(context.cublas_handle(), n,
                                                &alpha, x, 1, y, 1));
232 233
}

Q
QI JUN 已提交
234 235 236 237 238
template struct SetConstant<platform::CUDADeviceContext, float>;
template struct SetConstant<platform::CUDADeviceContext, double>;
template struct SetConstant<platform::CUDADeviceContext, int>;
template struct SetConstant<platform::CUDADeviceContext, int64_t>;
template struct SetConstant<platform::CUDADeviceContext, bool>;
239

Q
QI JUN 已提交
240 241 242
#define DEFINE_GPU_TRANS(RANK)                                         \
  template struct Transpose<platform::CUDADeviceContext, float, RANK>; \
  template struct Transpose<platform::CUDADeviceContext, double, RANK>;
243 244 245 246 247 248 249

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);
Q
qijun 已提交
250

251 252
struct TensorSetConstantGPU {
  TensorSetConstantGPU(const platform::DeviceContext& context,
D
dangqingqing 已提交
253
                       framework::Tensor* tensor, float value)
254 255 256 257
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void operator()() const {
Q
QI JUN 已提交
258 259 260
    SetConstant<platform::CUDADeviceContext, T> functor;
    functor(reinterpret_cast<const platform::CUDADeviceContext&>(context_),
            tensor_, static_cast<T>(value_));
261 262 263 264 265 266 267 268
  }

  const platform::DeviceContext& context_;
  framework::Tensor* tensor_;
  float value_;
};

template <>
D
dzhwinter 已提交
269
void set_constant_with_place<platform::CUDAPlace>(
270 271 272
    const platform::DeviceContext& context, framework::Tensor* tensor,
    float value) {
  framework::VisitDataType(framework::ToDataType(tensor->type()),
273
                           TensorSetConstantGPU(context, tensor, value));
274 275
}

Q
QI JUN 已提交
276 277 278 279 280
template struct RowwiseAdd<platform::CUDADeviceContext, float>;
template struct RowwiseAdd<platform::CUDADeviceContext, double>;
template struct ColwiseSum<platform::CUDADeviceContext, float>;
// template struct ColwiseSum<platform::CUDADeviceContext, double>;
// The ColwiseSum<platform::CUDADeviceContext, double> failed in debug mode,
281 282
// and only failed for this case. So reimplemented it.
template <>
Q
QI JUN 已提交
283 284
void ColwiseSum<platform::CUDADeviceContext, double>::operator()(
    const platform::CUDADeviceContext& context, const framework::Tensor& input,
285 286 287 288 289 290
    framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(), size);
  framework::Tensor one;
  one.mutable_data<double>({in_dims[0]}, context.GetPlace());
Q
QI JUN 已提交
291
  SetConstant<platform::CUDADeviceContext, double> set;
292
  set(context, &one, static_cast<double>(1.0));
Q
QI JUN 已提交
293 294 295 296
  gemv<platform::CUDADeviceContext, double>(
      context, true, static_cast<int>(in_dims[0]), static_cast<int>(in_dims[1]),
      1.0, input.data<double>(), one.data<double>(), 0.0,
      vector->data<double>());
297
}
298

Q
qijun 已提交
299 300 301
}  // namespace math
}  // namespace operators
}  // namespace paddle