fused_attention_op.cu 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda_fp16.h>
#include <cub/cub.cuh>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"

#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/math/math_function.h"

#include "paddle/fluid/operators/fused/attention_layer_norm.h"
#include "paddle/fluid/operators/fused/attn_gemm.h"
#include "paddle/fluid/operators/fused/fmha_ref.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class FusedAttentionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using U = LayerNormParamType<T>;
    auto *input_x = ctx.Input<Tensor>("X");

    const auto pre_layer_norm = ctx.Attr<bool>("pre_layer_norm");
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *ln_scale = ctx.Input<Tensor>("LnScale");
    auto *ln_bias = ctx.Input<Tensor>("LnBias");
    auto *ln_mean = ctx.Output<Tensor>("LnMean");
    auto *ln_var = ctx.Output<Tensor>("LnVariance");
    auto *ln_out = ctx.Output<Tensor>("LnOut");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto *qkv_weight = ctx.Input<Tensor>("QKVW");
    auto *qkv_bias = ctx.Input<Tensor>("QKVBias");
    auto *qkv_out = ctx.Output<Tensor>("QKVOut");
    auto *qkv_bias_out = ctx.Output<Tensor>("QKVBiasOut");

    auto *src_mask = ctx.Input<Tensor>("SrcMask");
    auto *transpose_out_2 = ctx.Output<Tensor>("TransposeOut2");
    auto *qk_out = ctx.Output<Tensor>("QKOut");
    auto *qktv_out = ctx.Output<Tensor>("QKTVOut");
    auto *softmax_out = ctx.Output<Tensor>("SoftmaxOut");
    auto *attn_dropout_mask_out = ctx.Output<Tensor>("AttnDropoutMaskOut");
    auto *attn_dropout_out = ctx.Output<Tensor>("AttnDropoutOut");
    auto *src_mask_out = ctx.Output<Tensor>("SrcMaskOut");
    auto *fmha_out = ctx.Output<Tensor>("FMHAOut");

    auto *out_linear_weight = ctx.Input<Tensor>("OutLinearW");
    auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
    auto *out_linear_out = ctx.Output<Tensor>("OutLinearOut");

    auto *ln_scale_2 = ctx.Input<Tensor>("Ln2Scale");
    auto *ln_bias_2 = ctx.Input<Tensor>("Ln2Bias");
    auto *dropout_mask_out = ctx.Output<Tensor>("DropoutMaskOut");
    auto *bias_dropout_residual_out =
        ctx.Output<Tensor>("BiasDropoutResidualOut");
    auto *ln_mean_2 = ctx.Output<Tensor>("Ln2Mean");
    auto *ln_var_2 = ctx.Output<Tensor>("Ln2Variance");
    const float ln_epsilon = ctx.Attr<float>("ln_epsilon");

    float attn_dropout_rate = ctx.Attr<float>("attn_dropout_rate");
    bool is_test_1 = ctx.Attr<bool>("attn_dropout_is_test");
    auto &dropout_implementation_1 =
        ctx.Attr<std::string>("attn_dropout_implementation");
    bool is_upscale_in_train_1 =
        (dropout_implementation_1 == "upscale_in_train");
    auto *seed_1 = ctx.HasInput("Seed1") ? ctx.Input<Tensor>("Seed1") : nullptr;
    bool is_fix_seed_1 = ctx.Attr<bool>("attn_dropout_fix_seed");
    int seed_val_1 = ctx.Attr<int>("attn_dropout_seed");

    // final output.
    auto *out = ctx.Output<Tensor>("Y");

    // get data ptr for qkv part.
    const auto input_x_dims = input_x->dims();
    const auto qkv_w_dims = qkv_weight->dims();

    auto *x_data = input_x->data<T>();
    auto *ln_scale_data = (ln_scale == nullptr ? nullptr : ln_scale->data<U>());
    auto *ln_bias_data = (ln_bias == nullptr ? nullptr : ln_bias->data<U>());
    auto *ln_mean_data = ln_mean->mutable_data<U>(ctx.GetPlace());
    auto *ln_var_data = ln_var->mutable_data<U>(ctx.GetPlace());
    auto *ln_out_data = ln_out->mutable_data<T>(ctx.GetPlace());

    auto *qkv_weight_data = qkv_weight->data<T>();
    auto *qkv_bias_data = qkv_bias->data<T>();
    auto *qkv_out_data = qkv_out->mutable_data<T>(ctx.GetPlace());
    auto *qkv_bias_out_data = qkv_bias_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for FMHA.
    auto *transpose_out_2_data =
        transpose_out_2->mutable_data<T>(ctx.GetPlace());
    auto *qk_out_data = qk_out->mutable_data<T>(ctx.GetPlace());
    auto *qktv_out_data = qktv_out->mutable_data<T>(ctx.GetPlace());
    auto *src_mask_out_data = src_mask_out->mutable_data<T>(ctx.GetPlace());
    auto *softmax_out_data = softmax_out->mutable_data<T>(ctx.GetPlace());
    auto *attn_dropout_mask_out_data =
        attn_dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *attn_dropout_out_data =
        attn_dropout_out->mutable_data<T>(ctx.GetPlace());
    auto *fmha_out_data = fmha_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for out_linear.
    auto *out_linear_weight_data = out_linear_weight->data<T>();
    auto *out_linear_bias_data = out_linear_bias->data<T>();
    auto *out_linear_out_data = out_linear_out->mutable_data<T>(ctx.GetPlace());

    // get data ptr for bias+dropout+residual+layernorm
    auto *ln_scale_2_data =
        (ln_scale_2 == nullptr ? nullptr : ln_scale_2->data<U>());
    auto *ln_bias_2_data =
        (ln_bias_2 == nullptr ? nullptr : ln_bias_2->data<U>());
    auto *dropout_mask_out_data =
        dropout_mask_out->mutable_data<uint8_t>(ctx.GetPlace());
    auto *bias_dropout_residual_out_data =
        bias_dropout_residual_out->mutable_data<T>(ctx.GetPlace());
    auto *ln_mean_2_data = ln_mean_2->mutable_data<U>(ctx.GetPlace());
    auto *ln_var_2_data = ln_var_2->mutable_data<U>(ctx.GetPlace());
    auto *final_out_data = out->mutable_data<T>(ctx.GetPlace());

    int batch_size = input_x_dims[0];
    int max_seq_len = input_x_dims[1];
    int dim_embed = input_x_dims[2];

    int num_head = qkv_w_dims[1];
    int dim_head = qkv_w_dims[2];

    int bsz_seq = batch_size * max_seq_len;
    int hidden_size = num_head * dim_head;
    int output_size = 3 * hidden_size;
    int input_size = dim_embed;

    auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
                                               epsilon, bsz_seq, dim_embed);
    // (transA, transB, compute_bias) = (false, true, true)
    auto qkv_compute = AttnMatMul<T>(ctx.cuda_device_context(), false, true,
                                     bsz_seq, output_size, input_size, true);

    AttnDropoutParam attn_dropout_param(
        is_test_1, dropout_implementation_1, attn_dropout_rate,
        is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
    auto fmha_ref_compute =
        FMHARef<T>(ctx.cuda_device_context(), batch_size, max_seq_len, num_head,
                   dim_head, attn_dropout_param);

    output_size = hidden_size;
    // (transA, transB, compute_bias) = (false, false, false)
    auto out_linear_compute =
        AttnMatMul<T>(ctx.cuda_device_context(), false, false, bsz_seq,
                      output_size, input_size, false);
    DropoutParam dropout_param2(ctx, 0);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx.cuda_device_context(), bsz_seq, dim_embed, dropout_param2,
        ln_epsilon);

    if (pre_layer_norm) {
      layer_norm_compute.ComputeForward(x_data, ln_scale_data, ln_bias_data,
                                        ln_out_data, ln_mean_data, ln_var_data);
      qkv_compute.ComputeForward(qkv_weight_data, ln_out_data, qkv_bias_data,
                                 qkv_out_data, qkv_bias_out_data);
    } else {
      qkv_compute.ComputeForward(qkv_weight_data, x_data, qkv_bias_data,
                                 qkv_out_data, qkv_bias_out_data);
    }
    fmha_ref_compute.ComputeForward(*qkv_bias_out, *src_mask, transpose_out_2,
                                    qk_out, src_mask_out, softmax_out,
                                    attn_dropout_mask_out, attn_dropout_out,
                                    qktv_out, fmha_out);
    // fmha_out: [batch_size, seq_len, num_head, head_dim]
    // weight:   [embed_dim, embed_dim]
    // out_linear_out: [batch_size, seq_len, embed_dim]
    out_linear_compute.ComputeForward(out_linear_weight_data, fmha_out_data,
                                      nullptr, out_linear_out_data, nullptr);
    // output = layernorm(residual + dropout(input + bias))
    fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
        ctx.cuda_device_context(), out_linear_out_data, x_data,
        out_linear_bias_data, ln_scale_2_data, ln_bias_2_data,
        bias_dropout_residual_out_data, dropout_mask_out_data, final_out_data,
        ln_mean_2_data, ln_var_2_data);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(fused_attention, ops::FusedAttentionOpKernel<float>,
                        ops::FusedAttentionOpKernel<double>,
                        ops::FusedAttentionOpKernel<plat::float16>);