test_conv3d_transpose_layer.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest


class Conv3DTransposeTestCase(unittest.TestCase):
    def __init__(self,
                 methodName='runTest',
                 batch_size=2,
                 spartial_shape=(8, 8, 8),
                 num_channels=6,
                 num_filters=8,
                 filter_size=3,
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=1,
                 no_bias=False,
                 data_format="NCDHW",
                 dtype="float32"):
        super(Conv3DTransposeTestCase, self).__init__(methodName)
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_filters = num_filters
        self.spartial_shape = spartial_shape
        self.filter_size = filter_size
        self.output_size = output_size

        self.padding = padding
        self.stride = stride
        self.dilation = dilation
        self.groups = groups
        self.no_bias = no_bias
        self.data_format = data_format
        self.dtype = dtype

    def setUp(self):
        self.channel_last = self.data_format == "NDHWC"
        if self.channel_last:
            input_shape = (self.batch_size, ) + self.spartial_shape + (
                self.num_channels, )
        else:
            input_shape = (self.batch_size, self.num_channels
                           ) + self.spartial_shape
        self.input = np.random.randn(*input_shape).astype(self.dtype)

        if isinstance(self.filter_size, int):
            filter_size = [self.filter_size] * 3
        else:
            filter_size = self.filter_size
        self.weight_shape = weight_shape = (self.num_channels, self.num_filters
                                            // self.groups) + tuple(filter_size)
        self.weight = np.random.uniform(
            -1, 1, size=weight_shape).astype(self.dtype)
        if self.no_bias:
            self.bias = None
        else:
            self.bias = np.random.uniform(
                -1, 1, size=(self.num_filters, )).astype(self.dtype)

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1, -1, self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                weight_attr = I.NumpyArrayInitializer(self.weight)
                if self.bias is None:
                    bias_attr = False
                else:
                    bias_attr = I.NumpyArrayInitializer(self.bias)
                y_var = fluid.layers.conv3d_transpose(
                    x_var,
                    self.num_filters,
                    filter_size=self.filter_size,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=weight_attr,
                    bias_attr=bias_attr,
                    data_format=self.data_format)
        feed_dict = {"input": self.input}
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def functional(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1, -1, self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                w_var = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype)
                b_var = fluid.data(
                    "bias", (self.num_filters, ), dtype=self.dtype)
L
LielinJiang 已提交
122
                y_var = F.conv_transpose3d(
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                    x_var,
                    w_var,
                    None if self.no_bias else b_var,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format)
        feed_dict = {"input": self.input, "weight": self.weight}
        if self.bias is not None:
            feed_dict["bias"] = self.bias
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def paddle_nn_layer(self):
        x_var = dg.to_variable(self.input)
L
LielinJiang 已提交
142
        conv = nn.ConvTranspose3d(
143 144 145 146 147 148 149
            self.num_channels,
            self.num_filters,
            self.filter_size,
            padding=self.padding,
            stride=self.stride,
            dilation=self.dilation,
            groups=self.groups,
L
LielinJiang 已提交
150
            data_format=self.data_format)
151 152 153
        conv.weight.set_value(self.weight)
        if not self.no_bias:
            conv.bias.set_value(self.bias)
L
LielinJiang 已提交
154
        y_var = conv(x_var, self.output_size)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        y_np = y_var.numpy()
        return y_np

    def _test_equivalence(self, place):
        place = fluid.CPUPlace()
        result1 = self.fluid_layer(place)
        result2 = self.functional(place)
        with dg.guard(place):
            result3 = self.paddle_nn_layer()
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)

        if fluid.core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            self._test_equivalence(place)


class Conv3DTransposeErrorTestCase(Conv3DTransposeTestCase):
    def runTest(self):
        place = fluid.CPUPlace()
        with dg.guard(place):
            with self.assertRaises(ValueError):
                self.paddle_nn_layer()


def add_cases(suite):
L
LielinJiang 已提交
185
    suite.addTest(Conv3DTransposeTestCase(methodName='runTest'))
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', stride=[1, 2, 1], dilation=2, no_bias=True))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest',
            output_size=[12, 19, 12],
            stride=[1, 2, 1],
            dilation=2))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', stride=2, dilation=(2, 1, 2)))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', padding="valid"))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', padding='valid'))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', filter_size=1, padding=(2, 3, 1)))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', padding=[1, 2, 2, 3, 2, 1]))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest',
            padding=[[0, 0], [0, 0], [2, 3], [1, 2], [2, 1]]))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', data_format="NDHWC"))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest',
            data_format="NDHWC",
            padding=[[0, 0], [1, 1], [2, 2], [3, 3], [0, 0]]))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', groups=2, padding="valid"))
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest',
            num_filters=6,
            num_channels=3,
            groups=3,
            padding="valid"))


def add_error_cases(suite):
    suite.addTest(
        Conv3DTransposeErrorTestCase(
            methodName='runTest', num_channels=5, groups=2))
    suite.addTest(
        Conv3DTransposeErrorTestCase(
            methodName='runTest', output_size="not_valid"))


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    add_cases(suite)
    add_error_cases(suite)
    return suite


if __name__ == '__main__':
    unittest.main()