im2sequence_op.h 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

   Licensed under the Apache License, Version 2.0 (the "License");
   You may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
16
#include <string>
17
#include <vector>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/operators/eigen/eigen_function.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/math/im2col.h"
23
#include "paddle/pten/kernels/funcs/math_function.h"
G
gongweibao 已提交
24 25 26 27

namespace paddle {
namespace operators {

W
wanghaoshuang 已提交
28 29 30
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

Y
Yang Yang 已提交
31 32
inline int Im2SeqOutputSize(int input_size, int filter_size, int padding_0,
                            int padding_1, int stride) {
W
wanghaoshuang 已提交
33 34 35
  const int output_size =
      (input_size + padding_0 + padding_1 - filter_size) / stride + 1;
  return output_size;
G
gongweibao 已提交
36 37
}

W
wanghaoshuang 已提交
38
template <typename DeviceContext, typename T>
39
class Im2SequenceKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
40
 public:
G
gongweibao 已提交
41
  void Compute(const framework::ExecutionContext& ctx) const override {
G
gongweibao 已提交
42
    const Tensor* in = ctx.Input<Tensor>("X");
W
wanghaoshuang 已提交
43
    LoDTensor* out = ctx.Output<LoDTensor>("Out");
G
gongweibao 已提交
44
    auto in_dim = in->dims();
W
wanghaoshuang 已提交
45 46
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
gongweibao 已提交
47 48
    int img_height = in_dim[2];
    int img_width = in_dim[3];
W
wanghaoshuang 已提交
49 50 51
    auto kernels = ctx.Attr<std::vector<int>>("kernels");
    auto strides = ctx.Attr<std::vector<int>>("strides");
    auto paddings = ctx.Attr<std::vector<int>>("paddings");
52 53 54 55
    if (ctx.HasInput("Y") && batch_size > 1) {
      const Tensor* imgrealsize = ctx.Input<Tensor>("Y");
      auto out_stride = ctx.Attr<std::vector<int>>("out_stride");
      Tensor cpu_shape_tensor;
56 57
      paddle::framework::TensorCopySync(*imgrealsize, platform::CPUPlace(),
                                        &cpu_shape_tensor);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
      std::vector<int> imgreal_h;
      std::vector<int> imgreal_w;
      std::vector<int> output_height;
      std::vector<int> output_width;
      int result = 0;
      for (int i = 0; i < batch_size; i++) {
        int tmp_real_h = static_cast<int>((cpu_shape_tensor.data<T>())[2 * i]);
        int tmp_real_w =
            static_cast<int>((cpu_shape_tensor.data<T>())[2 * i + 1]);
        if (tmp_real_h % out_stride[0] == 0) {
          tmp_real_h = tmp_real_h / out_stride[0];
        } else {
          tmp_real_h = tmp_real_h / out_stride[0] + 1;
        }
        if (tmp_real_w % out_stride[1] == 0) {
          tmp_real_w = tmp_real_w / out_stride[1];
        } else {
          tmp_real_w = tmp_real_w / out_stride[1] + 1;
        }
        imgreal_h.push_back(tmp_real_h);
        imgreal_w.push_back(tmp_real_w);
        output_height.push_back(Im2SeqOutputSize(
            imgreal_h[i], kernels[0], paddings[0], paddings[2], strides[0]));
        output_width.push_back(Im2SeqOutputSize(
            imgreal_w[i], kernels[1], paddings[1], paddings[3], strides[1]));
        result += output_height[i] * output_width[i];
      }

      out->mutable_data<T>({result, img_channels * kernels[0] * kernels[1]},
                           ctx.GetPlace());

      const std::vector<int> dilations({1, 1});
      int offset_out = 0;
      for (int i = 0; i < batch_size; i++) {
        const Tensor src =
            in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
        Tensor dst = out->Slice(offset_out,
                                offset_out + output_height[i] * output_width[i])
                         .Resize({output_height[i], output_width[i],
                                  img_channels, kernels[0], kernels[1]});
        offset_out += output_height[i] * output_width[i];

        math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
        auto& dev_ctx = ctx.template device_context<DeviceContext>();
        f(dev_ctx, src, dilations, strides, paddings, &dst);
      }
      framework::LoD lod(1);
      lod[0].reserve(batch_size + 1);
      int offset = 0;
      lod[0].push_back(offset);
      for (int i = 0; i < batch_size; ++i) {
        offset += output_height[i] * output_width[i];
        lod[0].push_back(offset);
      }
      out->set_lod(lod);
    } else {
      int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
                                           paddings[2], strides[0]);
      int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
                                          paddings[3], strides[1]);
L
liuwei1031 已提交
118 119 120 121
      out->mutable_data<T>(
          {static_cast<int64_t>(batch_size) * output_height * output_width,
           static_cast<int64_t>(img_channels) * kernels[0] * kernels[1]},
          ctx.GetPlace());
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
      const std::vector<int> dilations({1, 1});
      auto out_dims = out->dims();
      out->Resize({batch_size, out->numel() / batch_size});
      for (int i = 0; i < batch_size; i++) {
        const Tensor src =
            in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
        Tensor dst =
            out->Slice(i, i + 1).Resize({output_height, output_width,
                                         img_channels, kernels[0], kernels[1]});

        math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
        auto& dev_ctx = ctx.template device_context<DeviceContext>();
        f(dev_ctx, src, dilations, strides, paddings, &dst);
      }
      out->Resize(out_dims);
      framework::LoD lod(1);
      lod[0].reserve(batch_size + 1);
      int offset = 0;
W
wanghaoshuang 已提交
140
      lod[0].push_back(offset);
141 142 143 144 145
      for (int i = 0; i < batch_size; ++i) {
        offset += output_height * output_width;
        lod[0].push_back(offset);
      }
      out->set_lod(lod);
W
wanghaoshuang 已提交
146
    }
G
gongweibao 已提交
147 148 149
  }
};

W
wanghaoshuang 已提交
150
template <typename DeviceContext, typename T>
151
class Im2SequenceGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
152 153
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
G
add gpu  
gongweibao 已提交
154
    auto* in = ctx.Input<Tensor>("X");
W
wanghaoshuang 已提交
155 156
    Tensor* d_out =
        const_cast<Tensor*>(ctx.Input<Tensor>(framework::GradVarName("Out")));
W
wanghaoshuang 已提交
157
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
G
gongweibao 已提交
158 159 160
    d_x->mutable_data<T>(ctx.GetPlace());

    auto x_v = framework::EigenVector<T>::Flatten(*d_x);
W
wanghaoshuang 已提交
161
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
162
    EigenConstant<std::decay_t<decltype(place)>, T, 1>::Eval(place, x_v, 0.0);
G
add gpu  
gongweibao 已提交
163 164

    auto in_dim = in->dims();
W
wanghaoshuang 已提交
165 166
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
add gpu  
gongweibao 已提交
167 168 169
    int img_height = in_dim[2];
    int img_width = in_dim[3];

W
wanghaoshuang 已提交
170 171 172
    auto kernels = ctx.Attr<std::vector<int>>("kernels");
    auto strides = ctx.Attr<std::vector<int>>("strides");
    auto paddings = ctx.Attr<std::vector<int>>("paddings");
Y
Yang Yang 已提交
173 174 175 176
    int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
                                         paddings[2], strides[0]);
    int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
                                        paddings[3], strides[1]);
W
wanghaoshuang 已提交
177 178 179 180 181 182 183 184 185

    const std::vector<int> dilations({1, 1});

    auto d_out_dims = d_out->dims();
    d_out->Resize({batch_size, d_out->numel() / batch_size});
    for (int i = 0; i < batch_size; i++) {
      Tensor dst =
          d_x->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
      const Tensor src = d_out->Slice(i, i + 1).Resize(
W
wanghaoshuang 已提交
186
          {output_height, output_width, img_channels, kernels[0], kernels[1]});
W
wanghaoshuang 已提交
187 188 189
      math::Col2ImFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      f(dev_ctx, src, dilations, strides, paddings, &dst);
G
add gpu  
gongweibao 已提交
190
    }
W
wanghaoshuang 已提交
191
    d_out->Resize(d_out_dims);
G
gongweibao 已提交
192 193 194 195 196
  }
};

}  // namespace operators
}  // namespace paddle