dist_se_resnext.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25 26 27 28 29 30
import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import sys
import signal
T
typhoonzero 已提交
31
from test_dist_base import TestDistRunnerBase, runtime_main
32

P
pangyoki 已提交
33 34
paddle.enable_static()

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class SE_ResNeXt():
    def __init__(self, layers=50):
        self.params = train_parameters
        self.layers = layers

    def net(self, input, class_dim=1000):
        layers = self.layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)
        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv,
                pool_size=3,
                pool_stride=2,
                pool_padding=1,
                pool_type='max')
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]

            conv = self.conv_bn_layer(
                input=input,
                num_filters=64,
                filter_size=3,
                stride=2,
                act='relu')
            conv = self.conv_bn_layer(
                input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
            conv = self.conv_bn_layer(
                input=conv,
                num_filters=128,
                filter_size=3,
                stride=1,
                act='relu')
            conv = fluid.layers.pool2d(
                input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
                pool_type='max')

        for block in range(len(depth)):
            for i in range(depth[block]):
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    cardinality=cardinality,
                    reduction_ratio=reduction_ratio)

        pool = fluid.layers.pool2d(
            input=conv, pool_size=7, pool_type='avg', global_pooling=True)
        drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
        stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
W
Wu Yi 已提交
134 135 136 137 138
        out = fluid.layers.fc(
            input=drop,
            size=class_dim,
            act='softmax',
            param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
139
                initializer=fluid.initializer.Constant(value=0.05)))
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        return out

    def shortcut(self, input, ch_out, stride):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            filter_size = 1
            return self.conv_bn_layer(input, ch_out, filter_size, stride)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, cardinality,
                         reduction_ratio):
        conv0 = self.conv_bn_layer(
            input=input, num_filters=num_filters, filter_size=1, act='relu')
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality,
            act='relu')
        conv2 = self.conv_bn_layer(
            input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
        scale = self.squeeze_excitation(
            input=conv2,
            num_channels=num_filters * 2,
            reduction_ratio=reduction_ratio)

        short = self.shortcut(input, num_filters * 2, stride)

        return fluid.layers.elementwise_add(x=short, y=scale, act='relu')

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
M
minqiyang 已提交
184
            padding=(filter_size - 1) // 2,
185 186
            groups=groups,
            act=None,
W
Wu Yi 已提交
187 188
            # avoid pserver CPU init differs from GPU
            param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
189
                initializer=fluid.initializer.Constant(value=0.05)),
190 191 192 193 194 195 196
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def squeeze_excitation(self, input, num_channels, reduction_ratio):
        pool = fluid.layers.pool2d(
            input=input, pool_size=0, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
W
Wu Yi 已提交
197 198 199 200 201 202
        squeeze = fluid.layers.fc(
            input=pool,
            size=num_channels // reduction_ratio,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
            act='relu')
203
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
W
Wu Yi 已提交
204 205 206 207 208 209
        excitation = fluid.layers.fc(
            input=squeeze,
            size=num_channels,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
            act='sigmoid')
210 211 212 213
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale


T
typhoonzero 已提交
214
class DistSeResneXt2x2(TestDistRunnerBase):
215
    def get_model(self, batch_size=2, use_dgc=False):
T
typhoonzero 已提交
216 217 218 219
        # Input data
        image = fluid.layers.data(
            name="data", shape=[3, 224, 224], dtype='float32')
        label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
220

T
typhoonzero 已提交
221 222 223 224
        # Train program
        model = SE_ResNeXt(layers=50)
        out = model.net(input=image, class_dim=102)
        cost = fluid.layers.cross_entropy(input=out, label=label)
225

T
typhoonzero 已提交
226 227 228
        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
229

T
typhoonzero 已提交
230 231
        # Evaluator
        test_program = fluid.default_main_program().clone(for_test=True)
232

T
typhoonzero 已提交
233 234 235 236
        # Optimization
        total_images = 6149  # flowers
        epochs = [30, 60, 90]
        step = int(total_images / batch_size + 1)
237

T
typhoonzero 已提交
238 239 240
        bd = [step * e for e in epochs]
        base_lr = 0.1
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
241

242 243 244 245 246 247 248 249 250 251 252 253 254
        if not use_dgc:
            optimizer = fluid.optimizer.Momentum(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr),
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
        else:
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr),
                momentum=0.9,
                rampup_begin_step=0,
                regularization=fluid.regularizer.L2Decay(1e-4))
T
typhoonzero 已提交
255
        optimizer.minimize(avg_cost)
256

T
typhoonzero 已提交
257 258
        # Reader
        train_reader = paddle.batch(
259
            paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
T
typhoonzero 已提交
260 261
        test_reader = paddle.batch(
            paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
262

T
typhoonzero 已提交
263
        return test_program, avg_cost, train_reader, test_reader, acc_top1, out
264 265 266


if __name__ == "__main__":
T
typhoonzero 已提交
267
    runtime_main(DistSeResneXt2x2)