c_embedding_op_base.py 4.1 KB
Newer Older
B
Baibaifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.framework import core

SEED = 2021
np.random.seed(SEED)


def get_c_embedding(start, end, table, ids):
    index = ids.flatten()
    input_mask = (index < start) | (index >= end)
    masked_input = index - start
    masked_input[input_mask] = 0
    output = table[masked_input]
    output[input_mask] = 0.0
    return output


class TestCEmbeddingCPU(OpTest):
    def setUp(self):
        self.init_dtype()
        self.initcase()
        if core.is_compiled_with_npu():
            self.__class__.use_npu = True
        elif core.is_compiled_with_cuda():
            self.__class__.exist_fp64_check_grad = True

    def initcase(self):
        self.op_type = "c_embedding"
        table = np.random.random((17, 64)).astype(self.dtype)
        ids = np.random.randint(
            low=0, high=17 * 2, size=(2, 4)).astype(self.ids_dtype)
        self.start_index = 10
        self.end_index = self.start_index + 17

        self.inputs = {'W': table, 'Ids': ids}
        np_out = get_c_embedding(self.start_index, self.end_index, table, ids)
        self.outputs = {'Out': np_out.reshape((2, 4, 64))}
        self.attrs = {'start_index': self.start_index}
        if core.is_compiled_with_npu():
            self.__class__.use_npu = True

    def test_check_cpu(self):
        self.check_output_with_place(core.CPUPlace())

    def test_check_cpu_grad(self):
        self.check_grad_with_place(core.CPUPlace(), ['W'], 'Out')

    def init_dtype(self):
        self.dtype = "float32"
        self.ids_dtype = "int64"


class TestCEmbeddingOpBase(TestCEmbeddingCPU):
    def setUp(self):
        self.init_dtype()
        self.initcase()

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            self.check_output_with_place(core.CUDAPlace(0))
        elif core.is_compiled_with_npu():
            self.check_output_with_place(core.NPUPlace(0))

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            self.check_grad_with_place(core.CUDAPlace(0), ['W'], 'Out')
        elif core.is_compiled_with_npu():
            self.check_grad_with_place(core.NPUPlace(0), ['W'], 'Out')

    def init_dtype(self):
        if core.is_compiled_with_cuda():
            self.dtype = "float64"
            self.ids_dtype = "int64"
        elif core.is_compiled_with_npu():
            self.dtype = "float32"
            self.ids_dtype = "int32"


class TestCEmbeddingOpFP32(TestCEmbeddingOpBase):
    def setUp(self):
        self.init_dtype()
        self.initcase()

    def initcase(self):
        self.op_type = "c_embedding"
        table = np.random.random((17, 64)).astype(self.dtype)
        ids = np.random.randint(
            low=0, high=17 * 2, size=(2, 4)).astype(self.ids_dtype)
        self.start_index = 10
        ids[0][1] = 12
        ids[0][2] = 12
        ids[1][2] = 12
        ids[1][3] = 12
        self.end_index = self.start_index + 17

        self.inputs = {'W': table, 'Ids': ids}
        np_out = get_c_embedding(self.start_index, self.end_index, table, ids)
        self.outputs = {'Out': np_out.reshape((2, 4, 64))}
        self.attrs = {'start_index': self.start_index}

        if core.is_compiled_with_npu():
            self.__class__.use_npu = True
        elif core.is_compiled_with_cuda():
            self.__class__.exist_fp64_check_grad = True

    def init_dtype(self):
        self.dtype = "float32"
        self.ids_dtype = "int32"


if __name__ == "__main__":
    unittest.main()