general_grad.h 25.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <deque>

#include "glog/logging.h"
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/utils/hook_utils.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/grad_tensor_holder.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"

namespace egr {

/*
 * GeneralGrad is Helpper class to implement custom grad operation between
 * outputs and inputs.
 *
 * **/
class GeneralGrad {
 public:
  static GeneralGrad& Instance() { return *general_grad_; }

  // Get inputs's / no_grad_vars's GradNodes and InputMeta Info
  void GetTargetNodesInfo(
      const std::vector<paddle::experimental::Tensor>& inputs,
      bool is_no_grad_vars) {
    std::string msg = is_no_grad_vars ? "no_grad_vars" : "inputs";
    VLOG(6) << "Running in GetTargetNodesInfo.";
    if (!inputs.empty()) {
      VLOG(6) << msg << " are not empty.";
      size_t num_inputs = inputs.size();
      for (size_t i = 0; i < num_inputs; i++) {
        AutogradMeta* auto_grad_meta =
            EagerUtils::unsafe_autograd_meta(inputs[i]);
54 55 56 57
        PADDLE_ENFORCE_NOT_NULL(
            auto_grad_meta,
            paddle::platform::errors::Fatal(
                "We got %s:[%d] 's autograd meta is NULL.", msg, i));
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        auto* target_node = auto_grad_meta->GetMutableGradNode().get();

        if (orig_to_copied_node_map_.count(target_node)) {
          target_node = orig_to_copied_node_map_[target_node].get();
        } else {
          VLOG(6) << "Unable to find target node in "
                     "orig_to_copied_node_map_, likely indicating an "
                     "unused input";
        }

        PADDLE_ENFORCE_NOT_NULL(target_node,
                                paddle::platform::errors::Fatal(
                                    "There is no grad op for %s:[%d] or it's"
                                    "stop_gradient=True.",
                                    msg,
                                    i));

        if (is_no_grad_vars) {
          (no_grad_var_nodes_inputmeta_map_)[target_node] = auto_grad_meta;
        } else {
          // normal input
          (input_target_nodes_inputmeta_map_)[target_node] = auto_grad_meta;
        }
      }
    }
  }

  // Purify potential_startup_nodes_, remove nodes those are the same as
  // input_target_nodes
  void PurifyPotentialStartUpNodes() {
    VLOG(6) << "Running in PurifyPotentialStartUpNodes";
89 90 91 92
    if (input_target_nodes_inputmeta_map_.empty()) {
      VLOG(6) << "No input target nodes found, skip.";
      return;
    }
93
    std::unordered_set<GradNodeBase*> potential_startup_nodes_to_be_erased;
94 95
    for (auto startup_node : potential_startup_nodes_) {
      auto iter = input_target_nodes_inputmeta_map_.find(startup_node);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
      if (iter != input_target_nodes_inputmeta_map_.end()) {
        potential_startup_nodes_to_be_erased.emplace(iter->first);
      }
    }
    if (!potential_startup_nodes_to_be_erased.empty()) {
      for (auto nodes : potential_startup_nodes_to_be_erased) {
        potential_startup_nodes_.erase(nodes);
      }
    }
  }

  // Update Graph Info and remove some nodes those doesn't need to be
  // stored in potential_startup_nodes_
  void UpdateGraphInfo() {
    std::unordered_set<GradNodeBase*> startup_ops;
    VLOG(6) << "Running in UpdateGraphInfo";
    std::deque<GradNodeBase*> queue;
    for (auto& target_nodes_inputmeta_pair :
         input_target_nodes_inputmeta_map_) {
      queue.push_back(target_nodes_inputmeta_pair.first);
      needed_nodes_.emplace(target_nodes_inputmeta_pair.first);
    }
    std::unordered_set<GradNodeBase*> visited;
    std::unordered_set<GradNodeBase*> input_target_nodes_on_path;
    while (!queue.empty()) {
      auto* target_node = queue.front();
      queue.pop_front();
      if (visited.count(target_node)) {
        continue;
      }
      visited.insert(target_node);
      if (!(depending_nodes_)[target_node].empty()) {
        auto precedding_nodes = (depending_nodes_)[target_node];
        for (auto pre_nodes : precedding_nodes) {
          queue.push_back(pre_nodes);
          needed_nodes_.emplace(pre_nodes);
          if (IsInputTargetNodes(pre_nodes)) {
            input_target_nodes_on_path.emplace(pre_nodes);
          }
        }
      } else {  // startup_ops have no precedding nodes
        VLOG(6) << "Emplace startup_ops";
        startup_ops.emplace(target_node);
        needed_nodes_.emplace(target_node);
      }
    }

    for (auto& target_nodes_inputmeta_pair :
         input_target_nodes_inputmeta_map_) {
      if (!input_target_nodes_on_path.count(
              target_nodes_inputmeta_pair.first)) {
        endding_nodes_.emplace(target_nodes_inputmeta_pair.first);
      }
    }

    // Purify potential_startup_nodes_ again, remove some
    // potential startup nodes that unreach to input target nodes
    if (!startup_ops.empty()) {
      std::unordered_set<GradNodeBase*> potential_startup_nodes_to_be_erased;
      for (auto node : potential_startup_nodes_) {
        if (startup_ops.count(node) == 0) {
          VLOG(6) << "Set up potential_startup_nodes_to_be_erased";
          potential_startup_nodes_to_be_erased.emplace(node);
        }
      }
      if (!potential_startup_nodes_to_be_erased.empty()) {
        for (auto node : potential_startup_nodes_to_be_erased) {
          VLOG(6) << "Erase nodes in potential_startup_nodes_to_be_erased";
          potential_startup_nodes_.erase(node);
        }
      }
167
    }  // TODO(jiabin): May we need some check here.
168 169 170
  }

  // Get Graph Info Betweent input target GradNode and outputs,
171
  // record depending_nodes_
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  void GetGraphInfoBetweenTargets(const std::deque<GradNodeBase*>& init_queue) {
    VLOG(6) << "Runing In GetGraphInfoBetweenTargets";

    // Copy nodes
    std::deque<GradNodeBase*> queue = init_queue;
    std::unordered_set<GradNodeBase*> visited;

    // Visit each node exactly once in any order
    while (!queue.empty()) {
      GradNodeBase* node = queue.front();
      queue.pop_front();

      if (visited.count(node)) {
        continue;
      }
      visited.insert(node);

      // Find and append next nodes
      const paddle::small_vector<std::vector<GradSlotMeta>,
                                 kSlotSmallVectorSize>& metas =
          node->OutputMeta();
      for (const auto& meta_list : metas) {
        for (const GradSlotMeta& meta : meta_list) {
          const auto& edge = meta.GetEdge();
          GradNodeBase* next_node = edge.GetMutableGradNode().get();

          // Next node could be nullptr if it is leaf tensor with no
          // AccumulationNode attached
          // Or it could also originated from dispensable inputs
          if (!next_node) continue;

          // Record depending relationship
          (depending_nodes_)[next_node].emplace(node);
          queue.push_back(next_node);
        }
      }
    }
  }

  void ModifyReadyQueue(std::deque<GradNodeBase*>* queue) {
    std::deque<GradNodeBase*> tmp_queue;
    for (auto nodes : potential_startup_nodes_) {
      tmp_queue.push_back(nodes);
    }
    tmp_queue.swap(*queue);
  }

  // Set result for input target grad_var when potential_startup_nodes_ is empty
  void SetResultForInputTargetVar(
      const std::unordered_map<GradNodeBase*,
                               std::unique_ptr<GradTensorHolder>>&
          node_input_buffers_dict) {
    if (potential_startup_nodes_.size() == 0) {
      for (auto input_target_node : *GetInputTargetNodesInputMetaMap()) {
        // out rank_info of forward op
        auto rank_info = input_target_node.second->OutRankInfo();
        auto iter = node_input_buffers_dict.find(input_target_node.first);
        if (iter != node_input_buffers_dict.end()) {
          auto& target_result =
              (iter->second)->Buffers()[rank_info.first][rank_info.second];
          // save the target result
          results_map_[input_target_node.first] =
              std::make_shared<paddle::experimental::Tensor>(target_result);
        }
      }
237
    }  // TODO(jiabin): Some check here.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  }

  void SetResultForEnddingNodes(
      paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                           kSlotSmallVectorSize> grad_output,
      GradNodeBase* node) {
    if (IsEnddingNodes(node)) {
      VLOG(6) << "Set result for endding_nodes_ with grad_output_tensors";
      results_map_[node] =
          std::make_shared<paddle::experimental::Tensor>(grad_output[0][0]);
    }
  }

  std::shared_ptr<paddle::experimental::Tensor> FetchGradForTensor(
      const paddle::experimental::Tensor& tensor,
      egr::GradNodeBase* target_node) {
    std::shared_ptr<paddle::experimental::Tensor> tmp{
        std::make_shared<paddle::experimental::Tensor>()};
    VLOG(6)
        << "Running in FetchGradForTensor, prepare FetchGrad Hook for tensor: "
        << tensor.name();
    auto hook = [tmp](const paddle::experimental::Tensor& t) {
      auto tmp_grad = tmp.get();
      if (t.defined()) {
        VLOG(6) << "Set impl for FetchGrad Hook for tensor: " << t.name();
        tmp_grad->set_impl(t.impl());
        tmp_grad->set_autograd_meta(t.mutable_autograd_meta());
        return t;
      } else {
        VLOG(6) << "Retain NULL paddle::experimental::Tensor in FetchGrad Hook";
        return paddle::experimental::Tensor();
      }
    };

    // Append to GradientHooks
    auto rank_info = EagerUtils::unsafe_autograd_meta(tensor)->OutRankInfo();
    target_node->RegisterGradientHook(
        rank_info.first,
        rank_info.second,
        std::move(std::make_shared<egr::CppTensorHook>(hook)));
    return tmp;
  }

  // Register Hook to fetch input's gradients, when input's grad node is not an
  // endding node in backward graph. If input's grad node is an endding node in
  // backward graph, use grad node's output as inputs' gradients and no need to
  // register Hook. Please note that endding node must be GradNodeAccumulation
  // after ModifyBackwardGraph function.
  void RegisterFetchGradHook(
      const std::vector<paddle::experimental::Tensor>& inputs) {
    VLOG(6) << "Running in RegisterFetchGradHook.";
    if (!inputs.empty()) {
      size_t num_inputs = inputs.size();
      for (size_t i = 0; i < num_inputs; i++) {
        AutogradMeta* auto_grad_meta =
            EagerUtils::unsafe_autograd_meta(inputs[i]);
        auto* target_node = auto_grad_meta->GetMutableGradNode().get();

        if (dynamic_cast<egr::GradNodeAccumulation*>(target_node)) {
          VLOG(6)
              << "No need to call FetchGradForTensor for GradNodeAccumulation";
          continue;
        }

        if (orig_to_copied_node_map_.count(target_node)) {
          target_node = orig_to_copied_node_map_[target_node].get();
          if (copied_node_to_endding_node_map_.count(target_node)) {
            VLOG(6) << "No need to call FetchGradForTensor for endding_nodes";
            continue;
          }
        }

        PADDLE_ENFORCE_NOT_NULL(
            target_node,
            paddle::platform::errors::Fatal(
                "There is no grad op for inputs:[%d] or it's"
                "stop_gradient=True.",
                i));

        if (!IsEnddingNodes(target_node)) {
          // Fetch grad for tensor in target_node on path.
          auto fetched_grad = FetchGradForTensor(inputs[i], target_node);
          results_map_[target_node] = fetched_grad;
        }
      }
    }
  }

  void SetNodeToAccumulationNode(GradNodeBase* node) {
    if (dynamic_cast<egr::GradNodeAccumulation*>(node)) return;
    if (!(depending_nodes_)[node].empty()) {
329
      // Find precedding_nodes of current node.
330 331 332 333 334 335
      auto precedding_nodes = (depending_nodes_)[node];
      for (auto pre_nodes : precedding_nodes) {
        paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
            pre_nodes_edges = pre_nodes->MutableOutputMeta();
        for (size_t i = 0; i < pre_nodes_edges.size(); i++) {
          for (size_t j = 0; j < pre_nodes_edges[i].size(); j++) {
336
            const auto& edge_ = pre_nodes_edges[i][j].GetEdge();
337 338 339 340 341 342 343
            if (edge_.GetGradNode() == node) {
              Edge& pre_node_edge = pre_nodes_edges[i][j].GetMutableEdge();

              if (copied_node_to_endding_node_map_.count(node)) {
                pre_node_edge.SetGradNode(
                    copied_node_to_endding_node_map_[node]);
              } else {
344
                auto autograd_meta = egr::AutogradMeta(edge_);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
                std::shared_ptr<GradNodeBase> shared_grad_node_accumulation =
                    std::make_shared<egr::GradNodeAccumulation>(&autograd_meta);
                pre_node_edge.SetGradNode(shared_grad_node_accumulation);
                copied_node_to_endding_node_map_[node] =
                    shared_grad_node_accumulation;
              }

              auto* grad_node = pre_node_edge.GetGradNode();
              needed_nodes_.emplace(grad_node);
              endding_nodes_.emplace(grad_node);
              input_target_nodes_inputmeta_map_[grad_node] =
                  input_target_nodes_inputmeta_map_[node];

              VLOG(6)
                  << node->name() << " (addr:" << node
                  << ") has been transformed to GradNodeAccumulation (addr: "
                  << grad_node << ")";

              // Copy Hook func
              if (node->GradientHooksRegistered()) {
                VLOG(6) << "Copy hook func from node: " << node->name()
                        << " (addr: " << node
                        << ") to GradNodeAccumulation (addr: " << grad_node
                        << ")";
                grad_node->SetGradientHookFuntions(
                    node->GetGradientHookFuntions());
              }
372
            }  // or this node has no need to change
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
          }
        }
      }
    }
  }

  void ModifyBackwardGraph(std::deque<GradNodeBase*>* queue) {
    std::deque<GradNodeBase*> queue_ = *queue;
    std::unordered_set<GradNodeBase*> visited;

    while (!queue_.empty()) {
      GradNodeBase* node = queue_.front();
      queue_.pop_front();

      if (visited.count(node)) {
        continue;
      }
      visited.insert(node);

392 393 394
      if (IsInputTargetNodes(node) && IsEnddingNodes(node)) {
        SetNodeToAccumulationNode(node);
        continue;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
      }

      paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
          meta = node->MutableOutputMeta();
      for (size_t i = 0; i < meta.size(); i++) {
        for (size_t j = 0; j < meta[i].size(); j++) {
          Edge& edge = meta[i][j].GetMutableEdge();
          std::shared_ptr<GradNodeBase> next_node = edge.GetMutableGradNode();

          if (!next_node) continue;

          if (no_grad_var_nodes_inputmeta_map_.count(next_node.get()) &&
              (no_grad_var_nodes_inputmeta_map_[next_node.get()]
                   ->OutRankInfo() == edge.GetEdgeRankInfo())) {
            VLOG(3) << "Get no grad edge from grad_node: " << node->name()
                    << " : " << node << " to:" << next_node->name() << ", "
                    << next_node.get() << " with output rank info: "
                    << edge.GetEdgeRankInfo().first << ", "
                    << edge.GetEdgeRankInfo().second;
            // no_grad_var's grad no need to be computed
            meta[i][j].SetStopGradient(true);
            edge.Clear();
            continue;
          }

420 421 422 423 424 425 426 427 428 429 430
          if (meta.size() != 1 && IsNeededNodes(node) &&
              !IsNeededNodes(next_node.get()) && !IsEnddingNodes(node)) {
            VLOG(3) << "Get stop edge from grad_node: " << node->name() << " : "
                    << node << " to:" << next_node->name() << ", "
                    << next_node.get() << " with output rank info: " << i
                    << ", " << j;
            // No need to compute grad from needed Nodes to no need Nodes
            meta[i][j].SetStopGradient(true);
            edge.Clear();
            continue;
          }
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

          // Update BFS queue
          queue_.push_back(next_node.get());
        }
      }
    }
  }

  std::vector<paddle::experimental::Tensor> GetResults(
      const std::vector<paddle::experimental::Tensor>& inputs,
      bool allow_unused,
      bool create_graph) {
    VLOG(6) << "Running in GetResults";
    if (inputs.empty()) return {};

    std::vector<paddle::experimental::Tensor> results;
    results.reserve(inputs.size());

    for (size_t i = 0; i < inputs.size(); ++i) {
      auto& input = inputs[i];
      AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(input);

      auto* target_node = auto_grad_meta->GetMutableGradNode().get();
      if (orig_to_copied_node_map_.count(target_node)) {
        target_node = orig_to_copied_node_map_[target_node].get();
        if (copied_node_to_endding_node_map_.count(target_node)) {
          target_node = copied_node_to_endding_node_map_[target_node].get();
        }
      } else {
        VLOG(6) << "Unable to find target node in "
                   "orig_to_copied_node_map_, likely indicating an unused "
                   "input";
      }
      auto iter = results_map_.find(target_node);
      if (iter != results_map_.end()) {
        // set StopGradient = !create_graph
        AutogradMeta* tensor_auto_grad_meta =
            EagerUtils::autograd_meta(iter->second.get());
        tensor_auto_grad_meta->SetStopGradient(!create_graph);
        results.emplace_back(*(iter->second.get()));
      } else {
        PADDLE_ENFORCE_EQ(allow_unused,
                          true,
                          paddle::platform::errors::InvalidArgument(
                              "The %d-th input does not appear in the backward "
                              "graph. Please check the input tensor or set "
                              "allow_unused=True to get None result.",
                              i));
        results.emplace_back();
      }
    }
    Clear();
    return results;
  }

  bool IsNeededNodes(GradNodeBase* node) { return needed_nodes_.count(node); }

  bool IsEnddingNodes(GradNodeBase* node) { return endding_nodes_.count(node); }

  bool IsInputTargetNodes(GradNodeBase* node) {
    auto iter = input_target_nodes_inputmeta_map_.find(node);
    if (iter != input_target_nodes_inputmeta_map_.end()) {
      return true;
    }
    return false;
  }

  std::unordered_map<GradNodeBase*, AutogradMeta*>*
  GetNoGradVarNodesInputMetaMap() {
    return &no_grad_var_nodes_inputmeta_map_;
  }

  std::unordered_map<GradNodeBase*, AutogradMeta*>*
  GetInputTargetNodesInputMetaMap() {
    return &input_target_nodes_inputmeta_map_;
  }

  std::unordered_set<GradNodeBase*>* GetPotentialStartupNodes() {
    return &potential_startup_nodes_;
  }

  GradNodeBase* CopyGradNode(const std::shared_ptr<GradNodeBase>& orig_node) {
    if (orig_to_copied_node_map_.count(orig_node.get())) {
      return orig_to_copied_node_map_[orig_node.get()].get();
    }
    std::shared_ptr<GradNodeBase> copied_node = orig_node->Copy();

    // Save node and update mapping
    orig_to_copied_node_map_[orig_node.get()] = copied_node;
    copied_grad_nodes_.push_back(copied_node);
521 522
    VLOG(3) << "Copied Node: " << orig_node->name() << " ptr: " << orig_node
            << " to ptr: " << copied_node;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    return copied_node.get();
  }

  void CopyBackwardGraph(const std::deque<GradNodeBase*>& orig_init_queue) {
    std::deque<GradNodeBase*> queue = orig_init_queue;
    std::unordered_set<GradNodeBase*> visited;

    // BFS and recursively copy the grad nodes
    while (!queue.empty()) {
      GradNodeBase* orig_node = queue.front();
      queue.pop_front();
      if (visited.count(orig_node)) {
        continue;
      }
      visited.insert(orig_node);

      PADDLE_ENFORCE(
          orig_to_copied_node_map_.count(orig_node),
          paddle::platform::errors::Fatal(
              "Cannot copy backward graph,"
              "unable to find copied target for certain grad node."));
      GradNodeBase* copied_node = orig_to_copied_node_map_[orig_node].get();

      const paddle::small_vector<std::vector<GradSlotMeta>,
                                 kSlotSmallVectorSize>& orig_meta =
          orig_node->OutputMeta();
      paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
          copied_edges = copied_node->MutableOutputMeta();
      for (size_t i = 0; i < orig_meta.size(); i++) {
        for (size_t j = 0; j < orig_meta[i].size(); j++) {
          const Edge& orig_edge = orig_meta[i][j].GetEdge();
          Edge& copied_edge = copied_edges[i][j].GetMutableEdge();

          std::shared_ptr<GradNodeBase> orig_next_node =
              orig_edge.GetMutableGradNode();
          if (!orig_next_node) continue;

          // Copy Next Node
          std::shared_ptr<GradNodeBase> copied_next_node;
          if (orig_to_copied_node_map_.count(orig_next_node.get())) {
            copied_next_node = orig_to_copied_node_map_[orig_next_node.get()];

          } else {
            copied_next_node = orig_next_node->Copy();
            orig_to_copied_node_map_[orig_next_node.get()] = copied_next_node;
J
Jiabin Yang 已提交
568 569 570
            VLOG(3) << "Copied Node: " << orig_next_node->name()
                    << " ptr: " << orig_next_node
                    << " to ptr: " << copied_next_node;
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
            copied_grad_nodes_.push_back(copied_next_node);
          }

          // Update Edge's Grad Node
          copied_edge.SetGradNode(copied_next_node);

          // Update BFS queue
          queue.push_back(orig_next_node.get());
        }
      }
    }
  }

  void PreparedForGeneralGrad(
      const std::vector<paddle::experimental::Tensor>& inputs,
      const std::vector<paddle::experimental::Tensor>& no_grad_vars,
      const std::deque<GradNodeBase*>& orig_queue,
      std::deque<GradNodeBase*>* queue,
      const std::unordered_map<GradNodeBase*,
                               std::unique_ptr<GradTensorHolder>>&
          node_input_buffers_dict) {
    // Copy Backward Graph
    CopyBackwardGraph(orig_queue);
    // Get no_grad_vars's GradNodes and InputMeta Info
    GetTargetNodesInfo(no_grad_vars, true /* is_no_grad_vars */);
    // Get inputs's GradNodes and InputMeta Info
    GetTargetNodesInfo(inputs, false /* is_no_grad_vars */);
    // Purify potentialstartup_ops, remove those nodes that are the same as
    // input_target_nodes
    PurifyPotentialStartUpNodes();
    // Get Graph Info Betweent input target gradnode and outputs
    // Record the depending_nodes_ and potential_startup_nodes_
    GetGraphInfoBetweenTargets(*queue);
    // Update Graph Info, remove some nodes in
    // potential_startup_nodes_
    UpdateGraphInfo();
    // Reset queue. Queue is empty only when
    // 1.input equals to output. 2.input can not reach to output.
    ModifyReadyQueue(queue);
    // Set result for input target grad_var when queue is empty
    if (queue->empty()) {
      SetResultForInputTargetVar(node_input_buffers_dict);
    } else {
      // TODO(wuweilong): Find a better design here.
      ModifyBackwardGraph(queue);
      // Register Hook to fetch input's gradients
      RegisterFetchGradHook(inputs);
    }
  }

  void Clear() {
    no_grad_var_nodes_inputmeta_map_.clear();
    input_target_nodes_inputmeta_map_.clear();
    potential_startup_nodes_.clear();
    depending_nodes_.clear();
    results_map_.clear();
    copied_grad_nodes_.clear();
    orig_to_copied_node_map_.clear();
    copied_node_to_endding_node_map_.clear();
    needed_nodes_.clear();
    endding_nodes_.clear();
  }

 private:
  GeneralGrad() = default;
  static GeneralGrad* general_grad_;
  // no_grad_vars's GradNode and GradNode's InputMeta.
  std::unordered_map<GradNodeBase*, AutogradMeta* /* InputMeta */>
      no_grad_var_nodes_inputmeta_map_;
  // inputs's GradNode and GradNode's InputMeta.
  std::unordered_map<GradNodeBase*, AutogradMeta* /* InputMeta */>
      input_target_nodes_inputmeta_map_;
  // Record all the potential startup_nodes, will be changed.
  std::unordered_set<GradNodeBase*> potential_startup_nodes_;
  std::unordered_map<GradNodeBase* /* next node */,
                     std::unordered_set<GradNodeBase*> /* pre nodes */>
      depending_nodes_;
  std::unordered_map<GradNodeBase*,
                     std::shared_ptr<paddle::experimental::Tensor>>
      results_map_;

  std::vector<std::shared_ptr<GradNodeBase>> copied_grad_nodes_;
  std::unordered_map<GradNodeBase*, std::shared_ptr<GradNodeBase>>
      orig_to_copied_node_map_;
  std::unordered_set<GradNodeBase*> needed_nodes_;
  // Record which grad_node has been transformed to AccumulationNode
  std::unordered_map<GradNodeBase*, std::shared_ptr<GradNodeBase>>
      copied_node_to_endding_node_map_;
  std::unordered_set<GradNodeBase*> endding_nodes_;

  DISABLE_COPY_AND_ASSIGN(GeneralGrad);
};

}  // namespace egr