test_cast_op.py 7.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16 17

import gradient_checker
Y
Yu Yang 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
姜永久 已提交
20 21 22 23 24
from eager_op_test import (
    OpTest,
    convert_float_to_uint16,
    convert_uint16_to_float,
)
25 26

import paddle
27 28
from paddle import fluid
from paddle.fluid import Program, core, program_guard
Y
Yu Yang 已提交
29 30


姜永久 已提交
31
def cast_wrapper(x, out_dtype=None):
32
    return paddle.cast(x, paddle.dtype(out_dtype))
姜永久 已提交
33 34


Y
Yiqun Liu 已提交
35
class TestCastOpFp32ToFp64(OpTest):
Y
Yu Yang 已提交
36 37 38 39 40
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
41
            'in_dtype': int(core.VarDesc.VarType.FP32),
42
            'out_dtype': int(core.VarDesc.VarType.FP64),
Y
Yu Yang 已提交
43 44
        }
        self.op_type = 'cast'
45
        self.prim_op_type = "prim"
姜永久 已提交
46
        self.python_api = cast_wrapper
47
        self.public_python_api = cast_wrapper
Y
Yu Yang 已提交
48 49 50 51 52

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
53
        self.check_grad(['X'], ['Out'], check_prim=True)
Y
Yu Yang 已提交
54 55


Y
Yiqun Liu 已提交
56
class TestCastOpFp16ToFp32(OpTest):
K
Kexin Zhao 已提交
57 58
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
59
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
60 61 62
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
63
            'out_dtype': int(core.VarDesc.VarType.FP32),
K
Kexin Zhao 已提交
64 65
        }
        self.op_type = 'cast'
66
        self.prim_op_type = "prim"
姜永久 已提交
67
        self.python_api = cast_wrapper
68
        self.public_python_api = cast_wrapper
K
Kexin Zhao 已提交
69 70

    def test_check_output(self):
71
        self.check_output()
K
Kexin Zhao 已提交
72

73 74 75
    def test_grad(self):
        self.check_grad(['X'], ['Out'], check_prim=True, only_check_prim=True)

K
Kexin Zhao 已提交
76

Y
Yiqun Liu 已提交
77
class TestCastOpFp32ToFp16(OpTest):
K
Kexin Zhao 已提交
78 79 80 81 82 83
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
84
            'out_dtype': int(core.VarDesc.VarType.FP16),
K
Kexin Zhao 已提交
85 86
        }
        self.op_type = 'cast'
87
        self.prim_op_type = "prim"
姜永久 已提交
88
        self.python_api = cast_wrapper
89
        self.public_python_api = cast_wrapper
K
Kexin Zhao 已提交
90 91

    def test_check_output(self):
92
        self.check_output()
K
Kexin Zhao 已提交
93

94 95 96
    def test_grad(self):
        self.check_grad(['X'], ['Out'], check_prim=True, only_check_prim=True)

K
Kexin Zhao 已提交
97

Y
Yiqun Liu 已提交
98 99 100 101 102 103 104
class TestCastOpBf16ToFp32(OpTest):
    def setUp(self):
        ipt = np.array(np.random.randint(10, size=[10, 10])).astype('uint16')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_uint16_to_float(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.BF16),
105
            'out_dtype': int(core.VarDesc.VarType.FP32),
Y
Yiqun Liu 已提交
106 107
        }
        self.op_type = 'cast'
108
        self.prim_op_type = "prim"
姜永久 已提交
109
        self.python_api = cast_wrapper
110
        self.public_python_api = cast_wrapper
111 112 113
        self.if_enable_cinn()

    def if_enable_cinn(self):
114
        self.enable_cinn = False
Y
Yiqun Liu 已提交
115 116 117 118

    def test_check_output(self):
        self.check_output()

119 120 121
    def test_grad(self):
        self.check_grad(['X'], ['Out'], check_prim=True, only_check_prim=True)

Y
Yiqun Liu 已提交
122 123 124 125 126 127 128 129

class TestCastOpFp32ToBf16(OpTest):
    def setUp(self):
        ipt = np.random.random(size=[10, 10]).astype('float32')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_float_to_uint16(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
130
            'out_dtype': int(core.VarDesc.VarType.BF16),
Y
Yiqun Liu 已提交
131 132
        }
        self.op_type = 'cast'
133
        self.prim_op_type = "prim"
姜永久 已提交
134
        self.python_api = cast_wrapper
135
        self.public_python_api = cast_wrapper
136 137 138
        self.if_enable_cinn()

    def if_enable_cinn(self):
139
        self.enable_cinn = False
Y
Yiqun Liu 已提交
140 141 142 143

    def test_check_output(self):
        self.check_output()

144 145 146
    def test_grad(self):
        self.check_grad(['X'], ['Out'], check_prim=True, only_check_prim=True)

Y
Yiqun Liu 已提交
147

148
class TestCastOpError(unittest.TestCase):
149 150 151
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
152 153 154
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
155
            self.assertRaises(TypeError, paddle.cast, x1, 'int32')
156 157


H
hong 已提交
158 159 160
class TestCastOpEager(unittest.TestCase):
    def test_eager(self):
        with paddle.fluid.dygraph.base.guard():
161 162 163 164 165 166 167 168 169
            x = paddle.ones([2, 2], dtype="float16")
            x.stop_gradient = False
            out = paddle.cast(x, "float32")
            np.testing.assert_array_equal(
                out, np.ones([2, 2]).astype('float32')
            )
            out.backward()
            np.testing.assert_array_equal(x.gradient(), x.numpy())
            self.assertTrue(x.gradient().dtype == np.float16)
H
hong 已提交
170 171


172 173 174 175 176 177 178 179 180 181
class TestCastDoubleGradCheck(unittest.TestCase):
    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
182
        data = paddle.static.data('data', [2, 3, 4], dtype)
183 184 185 186
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

187 188 189 190 191 192
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.cast_wrapper, [data], out, x_init=[data_arr], place=place
        )
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestCastTripleGradCheck(unittest.TestCase):
    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
213
        data = paddle.static.data('data', [2, 3, 4], dtype)
214 215 216 217
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

218 219 220 221 222 223
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.cast_wrapper, [data], out, x_init=[data_arr], place=place
        )
224 225 226 227 228 229 230 231 232 233

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Y
Yu Yang 已提交
234
if __name__ == '__main__':
235
    paddle.enable_static()
Y
Yu Yang 已提交
236
    unittest.main()