strided_slice_op.cc 4.2 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Stack converter from fluid to tensorRT.
 */
class StridedSliceOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(4) << "convert fluid StridedSlice op to tensorrt Slice layer";

    framework::OpDesc op_desc(op, nullptr);
    auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);
    nvinfer1::Dims input_dims = input->getDimensions();

    std::vector<int> axes =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("axes"));
    std::vector<int> starts =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("starts"));
    std::vector<int> ends =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ends"));
    std::vector<int> strides =
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));

    nvinfer1::Dims start;
    start.nbDims = input_dims.nbDims;
    int axes_size = axes.size();
    for (int i = 0; i < start.nbDims; i++) {
      start.d[i] = 0;
    }
    for (int i = 0; i < axes_size; i++) {
      start.d[axes[i]] = starts[i];
    }

    nvinfer1::Dims stride;
    stride.nbDims = input_dims.nbDims;
    for (int i = 0; i < stride.nbDims; i++) {
      stride.d[i] = 1;
    }
    for (int i = 0; i < axes_size; i++) {
      stride.d[axes[i]] = strides[i];
    }

    nvinfer1::Dims size;
    size.nbDims = input_dims.nbDims;
    for (int i = 0; i < size.nbDims; i++) {
      size.d[i] = 1;
    }

    auto output_name = op_desc.Output("Out")[0];

    auto create_weights = [&](const std::vector<int>& data,
                              const std::string& type) -> int* {
      std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
      int data_size = data.size();
      tmp_tensor->Resize({data_size});
      auto* tmp_data = tmp_tensor->mutable_data<int>(platform::CPUPlace());
      for (int i = 0; i < data_size; i++) {
        tmp_data[i] = data[i];
      }

      engine_->SetWeights(output_name + "_add_slice_op_" + type,
                          std::move(tmp_tensor));
      return tmp_data;
    };

    std::vector<int> const_weight(input_dims.nbDims, 1);
    for (int i = 0; i < axes_size; i++) {
      const_weight[axes[i]] = strides[i];
    }

    int* weight_data = create_weights(const_weight, "size");

    TensorRTEngine::Weight weight{nvinfer1::DataType::kINT32,
                                  static_cast<void*>(weight_data),
                                  static_cast<size_t>(input_dims.nbDims)};

    int input_dim_size = input_dims.nbDims;
    nvinfer1::Dims input_shape;
    input_shape.nbDims = 1;
    input_shape.d[0] = input_dim_size;

    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());

    auto shape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input);

    auto size_layer = TRT_ENGINE_ADD_LAYER(
        engine_, ElementWise, *shape_layer->getOutput(0),
        *const_layer->getOutput(0), nvinfer1::ElementWiseOperation::kDIV);

    auto* layer =
        TRT_ENGINE_ADD_LAYER(engine_, Slice, *input, start, size, stride);
    layer->setInput(2, *size_layer->getOutput(0));

    RreplenishLayerAndOutput(layer, "strided_slice", {output_name}, test_mode);
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(strided_slice, StridedSliceOpConverter);