nets.py 9.6 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import layers
F
fengjiayi 已提交
15

16 17 18
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
19
    "glu",
20
    "scaled_dot_product_attention",
21
]
D
dzhwinter 已提交
22

F
fengjiayi 已提交
23 24 25

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
26
                         filter_size,
F
fengjiayi 已提交
27 28 29
                         pool_size,
                         pool_stride,
                         act,
F
fengjiayi 已提交
30
                         param_attr=None,
C
chengduoZH 已提交
31
                         pool_type='max',
C
chengduoZH 已提交
32
                         use_cudnn=True):
F
fengjiayi 已提交
33 34 35 36
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
37
        param_attr=param_attr,
C
chengduoZH 已提交
38 39
        act=act,
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
40 41 42 43

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
44
        pool_type=pool_type,
C
chengduoZH 已提交
45 46
        pool_stride=pool_stride,
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
47 48 49 50 51 52 53 54 55
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
56
                   param_attr=None,
Q
Qiao Longfei 已提交
57
                   conv_with_batchnorm=False,
W
wanghaoshuang 已提交
58
                   conv_batchnorm_drop_rate=0.0,
Q
Qiao Longfei 已提交
59
                   pool_stride=1,
C
chengduoZH 已提交
60
                   pool_type=None,
C
chengduoZH 已提交
61
                   use_cudnn=True):
Q
Qiao Longfei 已提交
62 63 64 65 66
    """
    Image Convolution Group, Used for vgg net.
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
67
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
68 69 70 71 72 73 74 75 76

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
77
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
91
            param_attr=param_attr[i],
C
chengduoZH 已提交
92
            act=local_conv_act,
C
chengduoZH 已提交
93
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
94 95

        if conv_with_batchnorm[i]:
96
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
97 98
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
99
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
100 101 102 103 104

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
105
        pool_stride=pool_stride,
C
chengduoZH 已提交
106
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
107
    return pool_out
D
dzhwinter 已提交
108 109 110 111 112


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
113
                       param_attr=None,
114
                       act="sigmoid",
115
                       pool_type="max"):
D
dzhwinter 已提交
116 117 118 119
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
120
        param_attr=param_attr,
121
        act=act)
D
dzhwinter 已提交
122

123
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
124
    return pool_out
G
guosheng 已提交
125 126 127 128


def glu(input, dim=-1):
    """
Y
ying 已提交
129 130 131
    The gated linear unit composed by split, sigmoid activation and elementwise
    multiplication. Specifically, Split the input into two equal sized parts
    :math:`a` and :math:`b` along the given dimension and then compute as
G
guosheng 已提交
132
    following:
G
guosheng 已提交
133 134 135 136 137

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
138
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
139
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
140

G
guosheng 已提交
141 142
    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
ying 已提交
143
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
144 145 146 147 148 149 150 151 152
            dimension to split along is :math:`rank(input) + dim`.

    Returns:
        Variable: The Tensor variable with half the size of input.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 6, 9]
153
            fluid.nets.glu(input=x, dim=1)  # shape of output: [3, 3, 9]
G
guosheng 已提交
154 155 156
    """

    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
157 158
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
159
    return out
160 161


Y
ying 已提交
162 163 164
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
Y
ying 已提交
165
                                 num_heads=1,
Y
ying 已提交
166
                                 dropout_rate=0.):
167 168 169
    """
    The dot-product attention.

170 171 172
    Attention mechanism can be seen as mapping a query and a set of key-value
    pairs to an output. The output is computed as a weighted sum of the values,
    where the weight assigned to each value is computed by a compatibility
173
    function (dot-product here) of the query with the corresponding key.
Y
ying 已提交
174 175

    The dot-product attention can be implemented through (batch) matrix
176 177 178 179
    multipication as follows:

        .. math::

180
            Attention(Q, K, V)= softmax(QK^\mathrm{T})V
181

Y
ying 已提交
182
    Refer to `Attention Is All You Need
183 184
    <https://arxiv.org/pdf/1706.03762.pdf>`_.

Y
ying 已提交
185
    Note that batch data containing sequences with different lengths is not
186
    supported by this because of the (batch) matrix multipication.
Y
ying 已提交
187

188 189 190 191 192 193 194 195

        queries (Variable): The input variable which is a Tensor or
                            LoDTensor.
        keys (Variable): The input variable which is a Tensor or LoDTensor.
        values (Variable): The input variable which is a Tensor or
                           LoDTensor.
        num_heads (int): Head number to compute the dot product attention.
        dropout_rate (float): The dropout rate for attention weight.
196 197

    Returns:
198 199
        Variable: The context Tensor computed by multi-head scaled dot product
                  attention.
200 201 202 203

    Examples:
        .. code-block:: python

Y
ying 已提交
204 205
            # Suppose q, k, v are tensor variables with the following
            # shape: q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
206 207 208 209
            out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
            out.shape  # [3, 5, 10]
            attn_scores.shape  # [3, 5, 6]
    """
Y
ying 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
            "Inputs quries, keys and values should all be 3-D tensors.")

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
            "The hidden size of queries and keys should be the same.")
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
            "The max sequence length in query batch and in key batch "
            "should be the same.")
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

    def __split_heads(x, num_heads):
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions.

        Args:
          x(Tensor): a 3-D input Tensor.
          num_heads(int): The number of heads.

        Returns:
          a Tensor with shape [..., n, m/n]
        """
242 243
        if num_heads == 1: return x

Y
ying 已提交
244
        hidden_size = x.shape[-1]
245 246 247
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
Y
ying 已提交
248
        reshaped = layers.reshape(
249 250
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
251 252

        # permuate the dimensions into:
253 254 255 256 257 258 259 260
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        if len(x.shape) == 3: return
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
261
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
Y
ying 已提交
262
        return layers.reshape(
263
            x=trans_x,
Y
ying 已提交
264 265 266 267
            shape=map(int, [
                trans_x.shape[0], trans_x.shape[1],
                trans_x.shape[2] * trans_x.shape[3]
            ]))
268 269

    q = __split_heads(queries, num_heads)
Y
ying 已提交
270 271 272 273
    k = __split_heads(keys, num_heads)
    v = __split_heads(values, num_heads)

    key_dim_per_head = keys.shape[-1] // num_heads
274 275
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
    product = layers.matmul(x=k, y=scaled_q, transpose_y=True)
Y
ying 已提交
276

Y
ying 已提交
277
    weights = layers.reshape(
278
        x=layers.reshape(
Y
ying 已提交
279
            x=product, shape=[-1, product.shape[-1]], act="softmax"),
280
        shape=product.shape)
Y
ying 已提交
281 282 283 284
    if dropout_rate:
        weights = layers.dropout(x, dropout_prob=dropout_rate, is_test=False)
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)