dense_tensor.cc 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/core/dense_tensor.h"

17 18 19 20 21
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/float16.h"

22 23 24
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/convert_utils.h"

25 26 27 28 29
namespace pten {

DenseTensor::DenseTensor(const std::shared_ptr<Allocator>& a,
                         const DenseTensorMeta& meta)
    : meta_(meta),
30
      storage_(make_intrusive<TensorStorage>(a, SizeOf(dtype()) * numel())) {}
31 32 33 34

DenseTensor::DenseTensor(const std::shared_ptr<Allocator>& a,
                         DenseTensorMeta&& meta)
    : meta_(std::move(meta)),
35
      storage_(make_intrusive<TensorStorage>(a, SizeOf(dtype()) * numel())) {}
36 37 38 39 40 41 42 43

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage,
                         const DenseTensorMeta& meta)
    : meta_(meta), storage_(std::move(storage)) {}

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage, DenseTensorMeta&& meta)
    : meta_(std::move(meta)), storage_(std::move(storage)) {}

44 45 46 47 48 49 50 51 52 53 54 55 56
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(
        paddle::platform::CPUPlace());
  }
  if (other.storage_ != nullptr && other.storage_->data_shared()) {
    storage_->set_data_shared(other.storage_->data_shared());
  }

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
}
57

58 59
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
60 61 62 63 64 65 66 67 68 69
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(
        paddle::platform::CPUPlace());
  }
  if (other.storage_ != nullptr && other.storage_->data_shared()) {
    storage_->set_data_shared(other.storage_->data_shared());
  }
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
70 71 72
  return *this;
}

73 74 75 76 77 78
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
  storage_.swap(other.storage_);
  return *this;
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
  return storage_.get() == b.storage_.get() && storage_.get() != nullptr;
}

void* DenseTensor::mutable_data(size_t request_bytes) {
  PADDLE_ENFORCE(
      valid(),
      paddle::platform::errors::PreconditionNotMet(
          "The meta data must be valid when call the mutable data function."));
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
99
  size_t bytes = numel() * SizeOf(dtype());
100 101 102 103 104 105 106 107 108 109
  if (request_bytes) {
    PADDLE_ENFORCE_GE(request_bytes,
                      bytes,
                      paddle::platform::errors::InvalidArgument(
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          request_bytes,
                          bytes));
    bytes = request_bytes;
  }
110
  if (storage_->size() < bytes + meta_.offset || storage_->size() == 0) {
111 112
    VLOG(10) << "mutbale data realloc, original size: " << storage_->size()
             << ", new size: " << bytes;
113
    storage_->Realloc(bytes);
114
    meta_.offset = 0;
115
  }
116 117
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
118 119 120 121
}

template <typename T>
T* DenseTensor::mutable_data() {
122 123 124
  // In order to be compatible with the original Tensor design and
  // execution system, we have to reset the datatype in mutable_data<T>.
  // When the compatibility phase is over in the future, we can delete it
125
  if (meta_.dtype == DataType::UNDEFINED) {
126 127
    VLOG(10) << "change data type in mutbale_data, target dtype - "
             << paddle::experimental::CppTypeToDataType<T>::Type();
128
    const_cast<DataType&>(meta_.dtype) =
129 130
        paddle::experimental::CppTypeToDataType<T>::Type();
  }
131
  PADDLE_ENFORCE(
132
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
133
      paddle::platform::errors::InvalidArgument(
134 135 136
          "The type of data (%d) we are trying to retrieve does not match the "
          "type of data currently contained in the container (%d).",
          static_cast<int>(paddle::experimental::CppTypeToDataType<T>::Type()),
137
          static_cast<int>(dtype())));
138 139 140 141 142
  return static_cast<T*>(mutable_data());
}

template <typename T>
const T* DenseTensor::data() const {
143
  check_memory_size();
144
  PADDLE_ENFORCE(
145
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
146
      paddle::platform::errors::InvalidArgument(
147 148 149 150 151
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
template <typename T>
T* DenseTensor::data() {
  check_memory_size();
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
      paddle::platform::errors::InvalidArgument(
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
  return reinterpret_cast<T*>(data());
}

167
void* DenseTensor::data() {
168 169 170 171
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
172 173
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
174 175
}

176
const void* DenseTensor::data() const {
177 178 179 180
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
181 182
  return reinterpret_cast<const void*>(
      reinterpret_cast<uintptr_t>(storage_->data()) + meta_.offset);
183 184
}

185 186 187 188 189 190
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
                 paddle::platform::errors::InvalidArgument(
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
191 192
}

193 194 195 196 197 198 199 200 201 202
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
203
void DenseTensor::Resize(const DDim& dims) {
石晓伟 已提交
204
  meta_.dims = dims;
205 206 207
  if (storage_ != nullptr) {
    mutable_data();
  }
石晓伟 已提交
208 209
}

210 211
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

212 213 214 215
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template dtype* DenseTensor::mutable_data();     \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16);
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128);

#undef DATA_MEMBER_FUNC_INSTANTIATION

235 236 237 238
/* --------------------------- */
/*   From framework::Tensor    */
/* --------------------------- */
DenseTensor::DenseTensor() {
239 240
  storage_ = make_intrusive<paddle::experimental::SharedStorage>(
      paddle::platform::CPUPlace());
241 242 243 244 245 246
  inplace_version_counter_ = std::make_shared<TensorInplaceVersion>(0);
  meta_.dtype = paddle::experimental::DataType::FLOAT32;
  meta_.offset = 0;
}

DenseTensor::DenseTensor(const paddle::framework::proto::VarType::Type& dtype) {
247 248
  storage_ = make_intrusive<paddle::experimental::SharedStorage>(
      paddle::platform::CPUPlace());
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
  inplace_version_counter_ = std::make_shared<TensorInplaceVersion>(0);
  meta_.dtype = TransToPtenDataType(dtype);
  meta_.offset = 0;
}

size_t DenseTensor::memory_size() const {
  if (storage_ == nullptr || storage_->data_shared() == nullptr) {
    return 0UL;
  }

  return storage_->data_shared()->size() - meta_.offset;
}

void DenseTensor::check_memory_size() const {
  PADDLE_ENFORCE_NOT_NULL(storage_,
                          paddle::platform::errors::PreconditionNotMet(
                              "Tensor holds no memory. "
                              "Call Tensor::mutable_data firstly."));
  PADDLE_ENFORCE_NOT_NULL(storage_->data_shared(),
                          paddle::platform::errors::PreconditionNotMet(
                              "Tensor holds no memory. "
                              "Call Tensor::mutable_data firstly."));
  size_t size = numel() * SizeOf(dtype());

  PADDLE_ENFORCE_LE(
      size,
      memory_size(),
      paddle::platform::errors::PreconditionNotMet(
          "Tensor's dimension is out of bound."
          "Tensor's dimension must be equal or less than the size of its "
          "memory."
          "But received  Tensor's dimension is d%, memory's size is %d.",
          size,
          memory_size()));
}

const paddle::platform::Place& DenseTensor::place() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "Tensor not initialized yet when Tensor::place() is called."));
  return storage_->place();
}

paddle::framework::proto::VarType::Type DenseTensor::type() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "Tensor not initialized yet when Tensor::type() is called."));
  return TransToProtoVarType(meta_.dtype);
}

paddle::framework::proto::VarType::Type DenseTensor::saved_type() const {
  return TransToProtoVarType(meta_.dtype);
}

void DenseTensor::set_layout(const paddle::framework::DataLayout layout) {
  meta_.layout = layout;
}

void DenseTensor::ResetHolder(
    const std::shared_ptr<paddle::memory::Allocation>& holder) {
  PADDLE_ENFORCE_EQ(
      meta_.offset,
      0,
      paddle::platform::errors::Fatal(
          "Only the offset is supported to zero when the holder is reset."));

317 318 319 320
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
321 322 323 324

  if (storage_->data_shared()) {
    PADDLE_ENFORCE_LE(
        numel() * SizeOf(dtype()) + meta_.offset,
325
        holder->size(),
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        paddle::platform::errors::InvalidArgument(
            "The size of Holder is not enough to store the Tensor."));
  }

  storage_->set_data_shared(holder);
}

void DenseTensor::ResetHolderWithType(
    const std::shared_ptr<paddle::memory::Allocation>& holder,
    const paddle::framework::proto::VarType::Type& type) {
  set_type(type);
  ResetHolder(holder);
}

void DenseTensor::set_type(
    const paddle::framework::proto::VarType::Type& type) {
  meta_.dtype = TransToPtenDataType(type);
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                paddle::framework::proto::VarType::Type type,
                                size_t requested_size) {
  set_type(type);
  PADDLE_ENFORCE_GE(
      numel(),
      0,
      paddle::platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(),
          "] now"));
  size_t size = numel() * SizeOf(dtype());
  if (requested_size && (requested_size > size)) {
    size = requested_size;
  }

  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(place);
  }

  /* some versions of boost::variant don't have operator!= */
  if (storage_->data_shared() == nullptr ||
      !(storage_->data_shared()->place() == place) ||
      storage_->data_shared()->size() < size + meta_.offset) {
    storage_->Clear();
    storage_->set_data_shared(paddle::memory::AllocShared(place, size));
    meta_.offset = 0;
  }
374 375
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                size_t requested_size) {
  return mutable_data(place, type(), requested_size);
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                paddle::framework::proto::VarType::Type type,
                                const paddle::platform::Stream& stream) {
  set_type(type);
  PADDLE_ENFORCE_GE(
      numel(),
      0,
      paddle::platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(),
          "] now"));
  size_t size = numel() * SizeOf(dtype());

397 398 399 400
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(place);
  }

401
  /* some versions of boost::variant don't have operator!= */
402
  if (storage_->data_shared() == nullptr ||
403 404 405 406 407 408 409 410
      !(storage_->data_shared()->place() == place) ||
      storage_->data_shared()->size() < size + meta_.offset ||
      !(paddle::platform::is_gpu_place(place) &&
        paddle::memory::InSameStream(storage_->data_shared(), stream))) {
    storage_->Clear();
    storage_->set_data_shared(paddle::memory::AllocShared(place, size, stream));
    meta_.offset = 0;
  }
411 412
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
413 414 415 416 417 418 419 420 421 422 423 424
}

/* @jim19930609: The following "mutable_data" only supports specific dtypes
   defined in OpProto. This part need another clean up once the data type across
   Fluid
   and Pten get unified.
   */
template <typename T>
inline T* DenseTensor::mutable_data(const DDim& dims,
                                    const paddle::platform::Place& place,
                                    size_t requested_size) {
  static_assert(std::is_pod<T>::value, "T must be POD");
425
  meta_.dims = dims;
426 427 428 429 430 431 432 433 434 435 436
  return mutable_data<T>(place, requested_size);
}

template <typename T>
inline T* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                    size_t requested_size) {
  static_assert(std::is_pod<T>::value, "T must be POD");
  return reinterpret_cast<T*>(mutable_data(
      place, paddle::framework::DataTypeTrait<T>::DataType(), requested_size));
}

437
void DenseTensor::ShareBufferWith(const DenseTensor& tensor) {
B
Baibaifan 已提交
438 439 440 441
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(
        paddle::platform::CPUPlace());
  }
442 443 444 445 446 447
  if (storage_ != nullptr && tensor.storage_ != nullptr) {
    storage_->set_data_shared(tensor.storage_->data_shared());
  }
  meta_.offset = tensor.meta().offset;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
#define LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(dtype) \
  template dtype* DenseTensor::mutable_data(         \
      const DDim& dims,                              \
      const paddle::platform::Place& place,          \
      size_t requested_size);                        \
  template dtype* DenseTensor::mutable_data(         \
      const paddle::platform::Place& place, size_t requested_size);

LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(bool)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int8_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(uint8_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int16_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int64_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(float)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(double)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128)

#undef LEGACY_DATA_MEMBER_FUNC_INSTANTIATION

/* ------------------------------ */
/*   From framework::LoDTensor    */
/* ------------------------------ */

DenseTensor::DenseTensor(const LoD& lod) : DenseTensor() { meta_.lod = lod; }

void DenseTensor::set_lod(const LoD& lod) { meta_.lod = lod; }

LoD* DenseTensor::mutable_lod() { return &meta_.lod; }

std::pair<size_t, size_t> DenseTensor::lod_element(size_t level,
                                                   size_t elem) const {
  PADDLE_ENFORCE_LT(
      level,
      NumLevels(),
      paddle::platform::errors::InvalidArgument(
          "The input level of LoD is invalid, it should be less than LoD "
          "size. The input level is %zu, the LoD size is %zu.",
          level,
          NumLevels()));

  PADDLE_ENFORCE_LT(elem,
                    NumElements(level),
                    paddle::platform::errors::InvalidArgument(
                        "The input element of LoD is invalid, it should be "
                        "less than the number of elements in its level."
                        "The input element is %zu, the number of elements in "
                        "its level is %zu.",
                        elem,
                        NumElements(level)));

  return std::make_pair((meta_.lod)[level][elem], (meta_.lod)[level][elem + 1]);
}

size_t DenseTensor::NumLevels() const { return meta_.lod.size(); }

size_t DenseTensor::NumElements(size_t level) const {
  PADDLE_ENFORCE_LT(
      level,
      NumLevels(),
      paddle::platform::errors::InvalidArgument(
          "The input level of LoD is invalid, it should be less than LoD "
          "size. The input level is %zu, the LoD size is %zu.",
          level,
          NumLevels()));

  // the last offset is the end of last element
  return (meta_.lod)[level].size() - 1;
}

521
}  // namespace pten