sum_mkldnn_op.cc 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*Licensed under the Apache License, Version 2.0(the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/operators/sum_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::CPUDeviceContext;
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using mkldnn::sum;
using mkldnn::reorder;
using platform::to_void_cast;

template <typename T>
class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    auto in_vars = ctx.MultiInputVar("X");

    const int N = in_vars.size();
    auto out_var = ctx.OutputVar("Out");
    bool in_place = out_var == in_vars[0];

    if (out_var->IsType<framework::LoDTensor>()) {
      LoDTensor* output = ctx.Output<LoDTensor>("Out");
      T* output_data = output->mutable_data<T>(ctx.GetPlace());

      std::vector<int> dst_tz = framework::vectorize2int(output->dims());
      auto src_tz = dst_tz;
      memory::format output_format{memory::format::format_undef};
      std::vector<float> scales;
      std::vector<memory::primitive_desc> srcs_mpd;
      std::vector<mkldnn::memory> srcs_mem;

      PADDLE_ENFORCE(in_vars[0]->IsType<LoDTensor>(),
                     "Input[0] must be LoDTensors");
      auto& input0 = in_vars[0]->Get<LoDTensor>();
      PADDLE_ENFORCE(input0.layout() == DataLayout::kMKLDNN &&
                         input0.format() != memory::format::format_undef,
                     "Wrong layout/format for inputs[0]");

      memory::format input_format = input0.format();

      if (src_tz.size() == 1 && (input_format == memory::format::nchw ||
                                 input_format == memory::format::nhwc)) {
        input_format = memory::format::x;
      }
      if (src_tz.size() == 2 && (input_format == memory::format::nchw ||
                                 input_format == memory::format::nhwc)) {
        input_format = memory::format::nc;
      }

91
      for (int i = 0; i < N; i++) {
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        PADDLE_ENFORCE(in_vars[i]->IsType<LoDTensor>(),
                       "all inputs must be all LoDTensors");
        auto& input = in_vars[i]->Get<LoDTensor>();
        PADDLE_ENFORCE(input.layout() == DataLayout::kMKLDNN &&
                           input.format() != memory::format::format_undef,
                       "Wrong layout/format for inputs");

        if (input.numel() == 0) {
          continue;
        }

        const T* input_data = input.data<T>();

        auto src_md =
            memory::desc(src_tz, memory::data_type::f32, input_format);
        auto src_mpd = memory::primitive_desc(src_md, mkldnn_engine);
        auto src_mem = memory(src_mpd, to_void_cast(input_data));
        srcs_mpd.push_back(src_mpd);
        srcs_mem.push_back(src_mem);
        scales.push_back(1.0);
      }

      auto dst_md =
          memory::desc(dst_tz, memory::data_type::f32, memory::format::any);

      auto sum_pd = sum::primitive_desc(dst_md, scales, srcs_mpd);

      std::shared_ptr<memory> dst_mem;
      if (in_place) {
        dst_mem.reset(new memory(sum_pd.dst_primitive_desc()));
      } else {
        dst_mem.reset(new memory(sum_pd.dst_primitive_desc(), output_data));
      }
      std::vector<mkldnn::primitive::at> inputs;
      for (size_t i = 0; i < srcs_mem.size(); ++i) {
        inputs.push_back(srcs_mem[i]);
      }

      auto sum_prim = mkldnn::sum(sum_pd, inputs, *dst_mem);
      output_format = (memory::format)platform::GetMKLDNNFormat(sum_pd);

      primitive reorder_prim;
      std::shared_ptr<memory> target_mem;
      if (in_place) {
        output_format = input_format;
        target_mem.reset(new memory(
            {{{src_tz}, memory::data_type::f32, output_format}, mkldnn_engine},
            output_data));
        reorder_prim = reorder(*dst_mem, *target_mem);
      }

      std::vector<primitive> pipeline;
      pipeline.push_back(sum_prim);
      if (in_place) pipeline.push_back(reorder_prim);
      stream(stream::kind::eager).submit(pipeline).wait();

      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(output_format);
    } else if (out_var->IsType<framework::SelectedRows>()) {
      // TODO(@mozga-intel) Add MKLDNN SelectedRows support
      std::unique_ptr<framework::SelectedRows> in0;
      if (in_place) {
        // If is in_place, we store the input[0] to in0
        auto& in_sel0 = in_vars[0]->Get<SelectedRows>();
        auto& rows = in_sel0.rows();
        in0.reset(new framework::SelectedRows(rows, in_sel0.height()));
        in0->mutable_value()->ShareDataWith(in_sel0.value());
      }

      auto get_selected_row = [&](size_t i) -> const SelectedRows& {
        if (i == 0 && in0) {
          return *in0.get();
        } else {
          return in_vars[i]->Get<SelectedRows>();
        }
      };
      auto* out = ctx.Output<SelectedRows>("Out");
      out->mutable_rows()->clear();
      auto* out_value = out->mutable_value();

      // Runtime InferShape
      size_t first_dim = 0;
      for (int i = 0; i < N; i++) {
        auto& sel_row = get_selected_row(i);
        first_dim += sel_row.rows().size();
      }
      auto in_dim =
          framework::vectorize(get_selected_row(N - 1).value().dims());
      in_dim[0] = static_cast<int64_t>(first_dim);

      out_value->Resize(framework::make_ddim(in_dim));

      // if all the input sparse vars are empty, no need to
      // merge these vars.
      if (first_dim == 0UL) {
        return;
      }
      out_value->mutable_data<T>(ctx.GetPlace());
      math::SelectedRowsAddTo<CPUDeviceContext, T> functor;
      int64_t offset = 0;
      for (int i = 0; i < N; i++) {
        auto& sel_row = get_selected_row(i);
        if (sel_row.rows().size() == 0) {
          continue;
        }
        PADDLE_ENFORCE_EQ(out->height(), sel_row.height());
        functor(ctx.template device_context<CPUDeviceContext>(), sel_row,
                offset, out);
        offset += sel_row.value().numel();
      }
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
      // TODO(@mozga-intel) Add MKLDNN LoDTensorArray support
      auto& out_array = *out_var->GetMutable<framework::LoDTensorArray>();
      for (size_t i = in_place ? 1 : 0; i < in_vars.size(); ++i) {
        PADDLE_ENFORCE(in_vars[i]->IsType<framework::LoDTensorArray>(),
                       "Only support all inputs are TensorArray");
        auto& in_array = in_vars[i]->Get<framework::LoDTensorArray>();

        for (size_t i = 0; i < in_array.size(); ++i) {
          if (in_array[i].numel() != 0) {
            if (i >= out_array.size()) {
              out_array.resize(i + 1);
            }
            if (out_array[i].numel() == 0) {
              framework::TensorCopy(in_array[i], in_array[i].place(),
                                    ctx.device_context(), &out_array[i]);
              out_array[i].set_lod(in_array[i].lod());
            } else {
              PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod());
              auto in = EigenVector<T>::Flatten(in_array[i]);
              auto result = EigenVector<T>::Flatten(out_array[i]);
              result.device(*ctx.template device_context<MKLDNNDeviceContext>()
                                 .eigen_device()) = result + in;
            }
          }
        }
      }
    } else {
      PADDLE_THROW("Unexpected branch, output variable type is %s",
                   out_var->Type().name());
    }
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_KERNEL(sum, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::SumMKLDNNOpKernel<float>);