composite_backward_api.h 42.6 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

G
GGBond8488 已提交
17 18 19 20 21 22
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

#include <math.h>

23
#include "paddle/fluid/prim/api/all.h"
24
#include "paddle/fluid/prim/api/generated_prim/prim_generated_api.h"
25 26
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/ddim.h"
J
Jiabin Yang 已提交
27 28
namespace paddle {
namespace prim {
29 30
using Tensor = paddle::Tensor;
using IntArray = paddle::experimental::IntArrayBase<paddle::Tensor>;
31 32
//  This function should have as same signature as phi, which defined in
//  paddle/phi/api/backward/backward_api.h
J
Jiabin Yang 已提交
33 34 35 36 37 38 39 40 41 42 43 44
template <typename T>
void relu_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto condition = greater_than<T>(
        out, full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    auto res = where<T>(condition,
                        out_grad,
                        full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    set_output<T>(res, x_grad);
  }
}

J
Jiabin Yang 已提交
45
template <typename T>
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
void softmax_grad(const Tensor& out,
                  const Tensor& out_grad,
                  int axis,
                  Tensor* x_grad) {
  if (x_grad) {
    if (out_grad.dims().size() > 0) {
      if (axis >= 0) {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad = new_out_grad -
                          out * sum<T>(new_out_grad, {axis}, out.dtype(), true);
        set_output<T>(tmp_x_grad, x_grad);
      } else {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad =
            new_out_grad - out * sum<T>(new_out_grad,
                                        {out.dims().size() + axis},
                                        out.dtype(),
                                        true);
        set_output<T>(tmp_x_grad, x_grad);
      }
    } else {
      set_output<T>(
          full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype()),
          x_grad);
    }
  }
}

template <typename T>
75 76 77 78 79 80 81
void cast_grad(const Tensor& out_grad, DataType dtype, Tensor* x_grad) {
  if (x_grad) {
    auto res = cast<T>(out_grad, dtype);
    set_output<T>(res, x_grad);
  }
}
template <typename T>
J
Jiabin Yang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
void gather_grad(const Tensor& x,
                 const Tensor& index,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool overwrite,
                 Tensor* grad_x) {
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int> tmp_perm;

  // change axis to rank 0
  int axis_value = axis.to<int>();
  tmp_perm.push_back(axis_value);
  // make other ranks
  for (int i = 0; i < x.dims().size(); ++i) {
    if (i != axis_value) {
      tmp_perm.push_back(i);
    }
  }
  std::vector<int> reverse_perm(tmp_perm);
  // make origin ranks
  for (int i = 0; i < static_cast<int>(tmp_perm.size()); ++i) {
103 104 105 106 107
    if (tmp_perm[i] >= 0) {
      reverse_perm[tmp_perm[i]] = i;
    } else {
      reverse_perm[tmp_perm[i] + tmp_perm.size()] = i;
    }
J
Jiabin Yang 已提交
108 109 110 111 112 113 114 115 116 117 118
  }

  // transpose out_grad and zero grad to target rank.
  auto tmp_zero_x_grad = transpose<T>(zero_tensor, tmp_perm);
  auto tmp_out_grad = transpose<T>(out_grad, tmp_perm);
  // scatter grad to grad_x
  auto tmp_grad_x = scatter<T>(tmp_zero_x_grad, index, tmp_out_grad, false);
  auto tmp_grad_x_tranposed = transpose<T>(tmp_grad_x, reverse_perm);
  set_output<T>(tmp_grad_x_tranposed, grad_x);
}

J
Jiabin Yang 已提交
119 120
template <typename T>
void tanh_grad(const Tensor& out, const Tensor& grad_out, Tensor* grad_x) {
121
  if (!grad_x) return;
122
  auto grad_x_tmp = grad_out * (1 - out * out);
123
  set_output<T>(grad_x_tmp, grad_x);
J
Jiabin Yang 已提交
124
}
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
template <typename T>
void reshape_grad(const Tensor& x, const Tensor& grad_out, Tensor* grad_x) {
  if (grad_x) {
    auto grad_x_tmp = reshape<T>(grad_out, phi::vectorize(x.dims()));
    set_output<T>(grad_x_tmp, grad_x);
  }
}

template <typename T>
void transpose_grad(const Tensor& grad_out,
                    const std::vector<int>& perm,
                    Tensor* grad_x) {
  if (grad_x) {
    std::vector<int> reverse_perm(perm);
    // make origin ranks
    for (int i = 0; i < static_cast<int>(perm.size()); ++i) {
142 143 144 145 146
      if (perm[i] >= 0) {
        reverse_perm[perm[i]] = i;
      } else {
        reverse_perm[perm[i] + perm.size()] = i;
      }
147 148 149 150 151 152
    }
    auto grad_x_tmp = transpose<T>(grad_out, reverse_perm);
    set_output<T>(grad_x_tmp, grad_x);
  }
}

153 154 155 156 157 158 159 160 161
template <typename T>
void subtract_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* dx,
                   Tensor* dy) {
  if (dy) {
    auto scale_out_grad = scale<T>(out_grad, -1.0, 0.0, true);
162
    if (x.dims() != y.dims()) {
163
      // Maybe need reduce here
164 165 166 167
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(scale_out_grad, dy);
      } else {
168 169
        auto dy_reduce_res =
            scale_out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
170
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
171
        set_output<T>(dy_tmp, dy);
172
      }
173 174 175 176 177
    } else {
      by_pass<T>(scale_out_grad, dy);
    }
  }
  if (dx) {
178
    if (y.dims() != x.dims()) {
179
      // Maybe need reduce here
180 181 182 183 184
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
185
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
186
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
187
        set_output<T>(dx_tmp, dx);
188
      }
189 190 191 192 193 194 195 196 197 198 199 200 201 202
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

template <typename T>
void add_grad(const Tensor& x,
              const Tensor& y,
              const Tensor& out_grad,
              int axis,
              Tensor* dx,
              Tensor* dy) {
  if (dy) {
203
    if (x.dims() != y.dims()) {
204
      // Maybe need reduce here
205 206 207 208 209
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dy);
      } else {
        auto dy_reduce_res =
210
            out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
211
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
212
        set_output<T>(dy_tmp, dy);
213 214
      }

215 216 217 218 219
    } else {
      by_pass<T>(out_grad, dy);
    }
  }
  if (dx) {
220
    if (y.dims() != x.dims()) {
221
      // Maybe need reduce here
222 223 224 225 226
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
227
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
228
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
229
        set_output<T>(dx_tmp, dx);
230
      }
231 232 233 234 235 236
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

237 238 239 240 241 242 243 244 245 246
template <typename T>
void sum_grad(const Tensor& x,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
R
risemeup1 已提交
247
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
248 249 250 251 252 253 254 255 256
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
257
  if (x_dim_size == 1) {
258
    x_grad_tmp = out_grad.expand(IntArray(x_dim));
259 260 261 262 263 264 265 266 267
  } else {
    if (!keepdim) {
      auto axis_ = std::vector<int64_t>();
      if (reduce_all) {
        for (int64_t i = 1; i < x_dim_size; i++) {
          axis_.push_back(i);
        }
      } else {
        axis_ = axis.GetData();
268 269 270 271 272
        for (int64_t i = 0; i < axis_size; i++) {
          if (axis[i] < 0) {
            axis_[i] = axis[i] + x_dim_size;
          }
        }
273
      }
274
      auto out_grad_ = unsqueeze<T>(out_grad, axis_);
275
      x_grad_tmp = out_grad_.expand(IntArray(x_dim));
276
    } else {
277
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
278 279 280
    }
  }

281
  set_output<T>(x_grad_tmp, x_grad);
282 283
}

284 285 286 287 288 289 290 291 292 293
template <typename T>
void divide_grad(const Tensor& x,
                 const Tensor& y,
                 const Tensor& out,
                 const Tensor& out_grad,
                 int axis,
                 Tensor* dx,
                 Tensor* dy) {
  if (dy) {
    // dy = -(x/y^2) * dout
294
    auto dy_res = -(x / y.pow(2.0)) * out_grad;
295
    if (x.dims() != y.dims()) {
296
      // Maybe need reduce here
297 298
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
299
        set_output<T>(dy_res, dy);
300 301
      } else {
        auto dy_reduce_res =
302
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
303
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
304
        set_output<T>(dy_tmp, dy);
305
      }
306
    } else {
307
      set_output<T>(dy_res, dy);
308 309 310 311
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = (1/y) * dout
312
    auto one_tensor = full<T>(phi::vectorize(y.dims()), 1.0, y.dtype());
313
    auto dx_res = one_tensor / y * out_grad;
314
    if (y.dims() != x.dims()) {
315
      // Maybe need reduce here
316 317
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
318
        set_output<T>(dx_res, dx);
319 320
      } else {
        auto dx_reduce_res =
321
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
322
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        set_output<T>(dx_tmp, dx);
      }

    } else {
      set_output<T>(dx_res, dx);
    }
  }  // indicate we will compute dx
}

template <typename T>
void elementwise_pow_grad(const Tensor& x,
                          const Tensor& y,
                          const Tensor& out_grad,
                          int axis,
                          Tensor* dx,
                          Tensor* dy) {
  if (dy) {
    // dy = lnx * x^y
    auto lnx = log<T>(x);
    auto x_pow_y = elementwise_pow<T>(x, y);
    auto dy_res = lnx * x_pow_y;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, dy);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, dy);
      }
    } else {
      set_output<T>(dy_res, dy);
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = y * x^(y-1)
    auto tmp_z = y - 1.0;
    auto x_pow_z = elementwise_pow<T>(x, tmp_z);
    auto dx_res = y * x_pow_z;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, dx);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
373
        set_output<T>(dx_tmp, dx);
374 375
      }

376
    } else {
377
      set_output<T>(dx_res, dx);
378 379 380
    }
  }  // indicate we will compute dx
}
381 382 383 384

template <typename T>
void sqrt_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
J
Jiabin Yang 已提交
385 386
    // This calculation is important for resnet.
    auto x_grad_tmp = (0.5 / out) * out_grad;
387
    set_output<T>(x_grad_tmp, x_grad);
388 389
  }
}
390

391 392 393 394 395 396 397 398 399
template <typename T>
void floor_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor =
        full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype());
    set_output<T>(zero_tensor, x_grad);
  }
}

W
wangzhen38 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
template <typename T>
void concat_grad(const std::vector<Tensor>& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 std::vector<Tensor*> x_grad) {
  int axis_value = axis.to<int>();
  int rank = x[0].dims().size();
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }
  axis_value = axis_value > 0 ? axis_value : 0;
  std::vector<int> sections;
  int x_num = x.size();
  for (int i = 0; i < x_num; ++i) {
    sections.push_back(x[i].dims()[axis_value]);
  }
  std::vector<Tensor> x_grad_tmp =
      split<T>(out_grad, phi::IntArray(sections), axis);
  for (int i = 0; i < x_num; ++i) {
    set_output<T>(x_grad_tmp.at(i), x_grad.at(i));
  }
}

423 424 425 426 427 428 429 430
template <typename T>
void multiply_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* x_grad,
                   Tensor* y_grad) {
  if (x_grad) {
431
    auto x_grad_unreduce = out_grad * y;
432 433
    if (x_grad_unreduce.dims() != x.dims()) {
      auto axes = get_reduce_dims_from_out(x_grad_unreduce.dims(), x.dims());
434
      if (!axes.size()) {
435
        set_output<T>(x_grad_unreduce, x_grad);
436
      } else {
437 438
        auto x_grad_reduced = x_grad_unreduce.sum(
            phi::vectorize(axes), x_grad_unreduce.dtype(), false);
439 440 441
        if (x_grad_reduced.dims().size() != x.dims().size()) {
          x_grad_reduced = reshape<T>(x_grad_reduced, x.shape());
        }
442
        set_output<T>(x_grad_reduced, x_grad);
443 444
      }
    } else {
445
      set_output<T>(x_grad_unreduce, x_grad);
446 447 448
    }
  }
  if (y_grad) {
449
    auto y_grad_unreduce = out_grad * x;
450 451
    if (y_grad_unreduce.dims() != y.dims()) {
      auto axes = get_reduce_dims_from_out(y_grad_unreduce.dims(), y.dims());
452
      if (!axes.size()) {
453
        set_output<T>(y_grad_unreduce, y_grad);
454
      } else {
455 456
        auto y_grad_reduced = y_grad_unreduce.sum(
            phi::vectorize(axes), y_grad_unreduce.dtype(), false);
457 458 459
        if (y_grad_reduced.dims().size() != y.dims().size()) {
          y_grad_reduced = reshape<T>(y_grad_reduced, y.shape());
        }
460
        set_output<T>(y_grad_reduced, y_grad);
461 462
      }
    } else {
463
      set_output<T>(y_grad_unreduce, y_grad);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    }
  }
}

template <typename T>
void expand_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const IntArray& shape,
                 Tensor* x_grad) {
  if (x_grad) {
    auto out_dims = phi::make_ddim(shape.GetData());
    if (out_dims != x.dims()) {
      auto axes = get_reduce_dims(x.dims(), out_dims);
      if (!axes.size()) {
        by_pass<T>(out_grad, x_grad);
      } else {
480
        auto reduced = out_grad.sum(phi::vectorize(axes), x.dtype(), false);
481 482 483
        if (reduced.dims().size() != x.dims().size()) {
          reduced = reshape<T>(reduced, x.shape());
        }
484
        set_output<T>(reduced, x_grad);
485 486 487 488 489 490 491
      }
    } else {
      by_pass<T>(out_grad, x_grad);
    }
  }
}

492 493 494 495 496 497 498 499
template <typename T>
void log_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    // dx = dout / x
    set_output<T>(out_grad / x, x_grad);
  }
}

500 501 502
template <typename T>
void exp_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
503
    set_output<T>(out_grad * out, x_grad);
504 505 506
  }
}

507 508 509 510 511 512 513
template <typename T>
void sigmoid_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    set_output<T>(out_grad * (out * (1 - out)), x_grad);
  }
}

514 515 516 517 518 519 520 521 522
template <typename T>
void abs_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto abs_tmp = abs<T>(x);
    auto divide_tmp = divide<T>(x, abs_tmp);
    set_output<T>(out_grad * divide_tmp, x_grad);
  }
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
template <typename T>
void matmul_double_grad(const Tensor& x,
                        const Tensor& y,
                        const Tensor& grad_out,
                        const paddle::optional<Tensor>& grad_x_grad,
                        const paddle::optional<Tensor>& grad_y_grad,
                        bool transpose_x,
                        bool transpose_y,
                        Tensor* x_grad,
                        Tensor* y_grad,
                        Tensor* grad_out_grad) {
  // Get dims from the input x, y, output_grad
  std::vector<std::int64_t> x_dims = vectorize(x.dims());
  std::vector<std::int64_t> y_dims = vectorize(y.dims());
  std::vector<std::int64_t> grad_out_dims = vectorize(grad_out.dims());

  int x_ndim = x_dims.size();
  int y_ndim = y_dims.size();
  int dout_ndim = grad_out_dims.size();

  // prepare dims for x_ndim <= 1 || y_ndim <= 1
  Tensor x_help, y_help, xg_help, yg_help, out_help;

  if (x_ndim == 1 && y_ndim == 1) {
    transpose_x = false;
    transpose_y = false;
    x_help = reshape<T>(x, IntArray(std::vector<int64_t>({1, x_dims[0]})));
    y_help = reshape<T>(y, IntArray(std::vector<int64_t>({y_dims[0], 1})));
    if (grad_x_grad) {
      xg_help = reshape<T>(grad_x_grad.get(),
                           IntArray(std::vector<int64_t>({1, x_dims[0]})));
    }
    if (grad_y_grad) {
      yg_help = reshape<T>(grad_y_grad.get(),
                           IntArray(std::vector<int64_t>({y_dims[0], 1})));
    }
    out_help = reshape<T>(grad_out, IntArray(std::vector<int64_t>({1, 1})));

  } else if (x_ndim == 1) {
    transpose_x = false;
    x_help = reshape<T>(x, IntArray(std::vector<int64_t>({1, x_dims[0]})));
    y_help = y;
    if (grad_x_grad) {
      xg_help = reshape<T>(grad_x_grad.get(),
                           IntArray(std::vector<int64_t>({1, x_dims[0]})));
    }
    if (grad_y_grad) {
      yg_help = grad_y_grad.get();
    }
    auto tmp_grad_out_dims = grad_out_dims;
    tmp_grad_out_dims.insert(tmp_grad_out_dims.begin(), 1);
    out_help = reshape<T>(grad_out, IntArray(tmp_grad_out_dims));

  } else if (y_ndim == 1) {
    transpose_y = false;
    x_help = x;
    y_help = reshape<T>(y, IntArray(std::vector<int64_t>({y_dims[0], 1})));
    if (grad_x_grad) {
      xg_help = grad_x_grad.get();
    }
    if (grad_y_grad) {
      yg_help = reshape<T>(grad_y_grad.get(),
                           IntArray(std::vector<int64_t>({y_dims[0], 1})));
    }
    auto tmp_grad_out_dims = grad_out_dims;
    tmp_grad_out_dims.push_back(1);
    out_help = reshape<T>(grad_out, IntArray(tmp_grad_out_dims));

  } else {
    x_help = x;
    y_help = y;
    if (grad_x_grad) {
      xg_help = grad_x_grad.get();
    }
    if (grad_y_grad) {
      yg_help = grad_y_grad.get();
    }
    out_help = grad_out;
  }

  bool is_broadcast = true;
  if (x_ndim <= 2 && y_ndim <= 2) {
    is_broadcast = false;
  } else if (x_ndim != y_ndim) {
    is_broadcast = true;
  } else {
    is_broadcast = !std::equal(
        x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2, y_dims.cbegin());
  }
  Tensor dx, dy, ddout_1, ddout_2, ddout;
  if (!grad_x_grad && !grad_y_grad) {
    x_grad = nullptr;
    y_grad = nullptr;
    grad_out_grad = nullptr;
    return;

  } else if (!grad_x_grad) {
    y_grad = nullptr;
    if (!transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, false, false);
      }
    } else if (!transpose_x && transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, false, true);
      }
    } else if (transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, false, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, true, false);
      }
    } else {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, true, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, true, true);
      }
    }

  } else if (!grad_y_grad) {
    x_grad = nullptr;
    if (!transpose_x && !transpose_y) {
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, true, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, false, false);
      }
    } else if (!transpose_x && transpose_y) {
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, false, true);
      }
    } else if (transpose_x && !transpose_y) {
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, false, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, true, false);
      }
    } else {
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, true, true);
      }
    }

  } else {
    if (!transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, true);
      }
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, true, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, false, false);
        ddout_2 = matmul<T>(xg_help, y_help, false, false);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else if (!transpose_x && transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, false);
      }

      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, false, true);
        ddout_2 = matmul<T>(xg_help, y_help, false, true);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else if (transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, false, true);
      }

      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, false, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, true, false);
        ddout_2 = matmul<T>(xg_help, y_help, true, false);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, true, true);
      }
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, true);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, true, true);
        ddout_2 = matmul<T>(xg_help, y_help, true, true);
        ddout = add<T>(ddout_1, ddout_2);
      }
    }
  }

  if (is_broadcast) {
    // Case3: broadcast. It need cost much time to reduce sum for the
    // broadcast and wastes the memory.
    // So we should avoid the case in reality.
    VLOG(3) << "It need cost much time to reduce sum for the broadcast and "
               "wastes the memory. So we should avoid the case in reality";
    // Reduce sum to get grad by ReduceSum
    if (x_grad) {
      auto tx_dims = x_dims;
      auto tx_ndim = x_ndim;
      auto tdout_ndim = dout_ndim;
      if (x_ndim == 1) {
        tx_dims = std::vector<int64_t>({1, x_dims[0]});
        tx_ndim = x_ndim + 1;
        tdout_ndim = dout_ndim + 1;
      }

      auto x_grad_reduce_dims =
          get_reduce_dims(dx, tdout_ndim, tx_ndim, &tx_dims);

      if (!x_grad_reduce_dims.empty()) {
        dx = sum<T>(dx, IntArray(x_grad_reduce_dims), dy.dtype(), true);
      }
      reshape<T>(dx, IntArray(tx_dims));
    }

    if (y_grad) {
      auto ty_dims = y_dims;
      auto ty_ndim = y_ndim;
      auto tdout_ndim = dout_ndim;
      if (y_ndim == 1) {
        ty_dims = std::vector<int64_t>({y_dims[0], 1});
        ty_ndim = y_ndim + 1;
        tdout_ndim = dout_ndim + 1;
      }

      auto y_grad_reduce_dims =
          get_reduce_dims(dy, tdout_ndim, ty_ndim, &ty_dims);

      if (!y_grad_reduce_dims.empty()) {
        dy = sum<T>(dy, IntArray(y_grad_reduce_dims), dy.dtype(), true);
      }
      reshape<T>(dy, IntArray(ty_dims));
    }
  }

  // recover the original dim of output (delete 1)
  std::vector<int64_t> dx_dims =
      dx.initialized() ? vectorize(dx.dims()) : std::vector<int64_t>({});
  std::vector<int64_t> dy_dims =
      dy.initialized() ? vectorize(dy.dims()) : std::vector<int64_t>({});
  std::vector<int64_t> ddout_dims =
      ddout.initialized() ? vectorize(ddout.dims()) : std::vector<int64_t>({});
  if (x_ndim == 1 && y_ndim == 1) {
    if (dx.initialized() && dx_dims[0] == 1) {
      dx = reshape<T>(dx, IntArray(x_dims));
    }
    if (dy.initialized() && dy_dims.back() == 1) {
      dy = reshape<T>(dy, IntArray(y_dims));
    }
    if (ddout.initialized() && ddout_dims == std::vector<int64_t>({1, 1})) {
      ddout = reshape<T>(ddout, IntArray(std::vector<int64_t>({1})));
    }
  } else if (x_ndim == 1) {
    if (dx.initialized() && dx_dims[0] == 1) {
      dx = reshape<T>(dx, IntArray(x_dims));
    }
    if (ddout.initialized() && ddout_dims[0] == 1) {
      ddout = reshape<T>(ddout,
                         IntArray(std::vector<int64_t>(
                             {ddout_dims.cbegin() + 1, ddout_dims.cend()})));
    }
  } else if (y_ndim == 1) {
    if (dy.initialized() && dy_dims.back() == 1) {
      dy = reshape<T>(dy, IntArray(y_dims));
    }
    if (ddout.initialized() && ddout_dims.back() == 1) {
      ddout = reshape<T>(ddout,
                         IntArray(std::vector<int64_t>(
                             {ddout_dims.cbegin(),
                              ddout_dims.cbegin() + ddout_dims.size() - 1})));
    }
  }

  if (x_grad) {
    set_output<T>(dx, x_grad);
  }
  if (y_grad) {
    set_output<T>(dy, y_grad);
  }
  if (grad_out_grad) {
    set_output<T>(ddout, grad_out_grad);
  }
}

X
xiaoguoguo626807 已提交
832 833 834 835 836 837 838 839 840 841 842 843
template <typename T>
void slice_grad(const Tensor& input,
                const Tensor& out_grad,
                const std::vector<int64_t>& axes,
                const IntArray& starts,
                const IntArray& ends,
                const std::vector<int64_t>& infer_flags,
                const std::vector<int64_t>& decrease_axis,
                Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();
844
    std::vector<int64_t> origin_out_shape;
X
xiaoguoguo626807 已提交
845 846 847 848 849 850 851 852
    auto in_dims = input.dims();

    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == static_cast<size_t>(in_dims.size())) {
        // all dims decrease
        out_dims = phi::make_ddim(std::vector<int>(decrease_size, 1));
      } else {
853
        origin_out_shape.resize(out_dims.size() + decrease_size, -1);
X
xiaoguoguo626807 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }
        out_dims = phi::make_ddim(origin_out_shape);
      }
    }

    std::vector<int> offsets(rank, 0);
    std::vector<int> extents(rank, 0);
    for (size_t i = 0; i < rank; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    for (size_t i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      int64_t start = starts[i] < 0 ? (starts[i] + in_dims[axis]) : starts[i];
      start = std::max(start, static_cast<int64_t>(0));
      offsets[axis] = start;
    }

    std::vector<int> paddings;
    for (size_t i = 0; i < rank; ++i) {
      paddings.push_back(offsets[i]);
      paddings.push_back((in_dims[i] - out_dims[i]) - offsets[i]);
    }
887 888 889 890 891 892 893 894 895
    if (decrease_size > 0 &&
        (decrease_size != static_cast<size_t>(in_dims.size()))) {
      auto out_tmp =
          pad<T>(reshape<T>(out_grad, origin_out_shape), paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    } else {
      auto out_tmp = pad<T>(out_grad, paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    }
X
xiaoguoguo626807 已提交
896 897 898
  }
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
template <typename T>
void layer_norm_grad(const Tensor& x,
                     const paddle::optional<Tensor>& scale,
                     const paddle::optional<Tensor>& bias,
                     const Tensor& mean,
                     const Tensor& variance,
                     const Tensor& out_grad,
                     float epsilon,
                     int begin_norm_axis,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  auto x_dims = x.dims();
  auto shape_1 = 1;  // front part
  auto shape_2 = 1;  // back part
  for (int i = 0; i < begin_norm_axis; ++i) {
    shape_1 *= x_dims[i];
  }
  for (int i = begin_norm_axis; i < x.dims().size(); ++i) {
    shape_2 *= x_dims[i];
  }
  auto scale_ptr = scale.get_ptr();
  auto bias_ptr = bias.get_ptr();

  // cast dtype to float32 if dtype =float16
  Tensor x_cast = x;
  Tensor out_grad_cast = out_grad;
  Tensor scale_cast;
  if (scale_ptr) {
    scale_cast = reshape<T>(*scale_ptr, std::vector<int64_t>({1, shape_2}));
  }
  if (x.dtype() == phi::DataType::FLOAT16) {
    x_cast = cast<T>(x, phi::DataType::FLOAT32);
    out_grad_cast = cast<T>(out_grad, phi::DataType::FLOAT32);
    if (scale_ptr) {
      scale_cast = cast<T>(scale_cast, phi::DataType::FLOAT32);
    }
  }

  x_cast = reshape<T>(x_cast, std::vector<int64_t>({shape_1, shape_2}));
  out_grad_cast =
      reshape<T>(out_grad_cast, std::vector<int64_t>({shape_1, shape_2}));
  auto mean_ = reshape<T>(mean, std::vector<int64_t>({shape_1, 1}));
  auto variance_ = reshape<T>(variance, std::vector<int64_t>({shape_1, 1}));
  if (bias_grad) {
    if (bias_ptr) {
      auto bias_grad_tmp =
          out_grad_cast.sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      bias_grad_tmp = reshape<T>(bias_grad_tmp, bias_ptr->shape());
      set_output<T>(bias_grad_tmp, bias_grad);
    } else {
      bias_grad = nullptr;
    }
  }
  auto x_sub_mean = x_cast - mean_;
  auto tmp = (1.0 / (variance_ + epsilon));
  auto sqrt_var_1 = sqrt<T>(tmp);
  if (scale_grad) {
    if (scale_ptr) {
      auto scale_grad_tmp =
          (x_sub_mean * sqrt_var_1 * out_grad_cast)
              .sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      scale_grad_tmp = reshape<T>(scale_grad_tmp, scale_ptr->shape());
      set_output<T>(scale_grad_tmp, scale_grad);
    } else {
      scale_grad = nullptr;
    }
  }

  if (x_grad) {
    if (!scale_ptr) {
      scale_cast =
          full<T>(std::vector<int64_t>({1, shape_2}), 1.0, x_cast.dtype());
    }
    auto out_grad_scale = out_grad_cast * scale_cast;
    auto dx_end = (sqrt_var_1 * out_grad_scale);
    auto d_mean_0 =
        (-dx_end).sum(std::vector<int64_t>({1}), x_cast.dtype(), true);
    auto d_mean = (1.0 / shape_2) * d_mean_0;
    auto d_std_1 = (-tmp * x_sub_mean * out_grad_scale)
                       .sum(std::vector<int64_t>({1}), x_cast.dtype(), true);
    auto d_std_2 = (1.0 / shape_2) * sqrt_var_1;
    d_std_2 = reshape<T>(d_std_2, std::vector<int64_t>({shape_1, 1}));
    d_std_2 = d_std_2 * x_sub_mean;
    auto d_std = d_std_1 * d_std_2;

    auto x_grad_tmp = dx_end + d_mean + d_std;
    x_grad_tmp = reshape<T>(x_grad_tmp, phi::vectorize(x.dims()));
    if (x.dtype() == phi::DataType::FLOAT16) {
      x_grad_tmp = cast<T>(x_grad_tmp, x.dtype());
    }
    set_output<T>(x_grad_tmp, x_grad);
  }
}

G
GGBond8488 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
template <typename T>
void cumsum_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool flatten,
                 bool exclusive,
                 bool reverse,
                 Tensor* x_grad) {
  if (x_grad) {
    auto grad = cumsum<T>(out_grad, axis, flatten, exclusive, !reverse);
    grad = reshape<T>(grad, x.shape());
    set_output<T>(grad, x_grad);
  }
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
template <typename T>
void split_grad(const std::vector<Tensor>& out_grad,
                const Scalar& axis,
                Tensor* x_grad) {
  if (x_grad) {
    auto grad = concat<T>(out_grad, axis);
    set_output<T>(grad, x_grad);
  }
}

Z
zqw_1997 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
template <typename T>
void topk_grad(const Tensor& x,
               const Tensor& indices,
               const Tensor& out_grad,
               const Scalar& k,
               const int& axis,
               const bool& largest,
               const bool& sorted,
               Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = put_along_axis<T>(zero_tensor, indices, out_grad, axis);
1031 1032 1033
    set_output<T>(x_grad_tmp, x_grad);
  }
}
Z
zqw_1997 已提交
1034

1035 1036 1037 1038 1039 1040 1041 1042
template <typename T>
void gather_nd_grad(const Tensor& x,
                    const Tensor& index,
                    const Tensor& out_grad,
                    Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = scatter_nd_add<T>(zero_tensor, index, out_grad);
Z
zqw_1997 已提交
1043 1044 1045 1046
    set_output<T>(x_grad_tmp, x_grad);
  }
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
template <typename T>
void max_grad(const Tensor& x,
              const Tensor& out,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
  if (x_dim_size == 0 || x_dim_size == 1 || keepdim) {
    auto out_grad_tmp = out_grad.expand(IntArray(x_dim));
    auto out_tmp = out.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  } else {
    auto axis_ = std::vector<int64_t>();
    if (reduce_all) {
      for (int64_t i = 1; i < x_dim_size; i++) {
        axis_.push_back(i);
      }
    } else {
      axis_ = axis.GetData();
      for (int64_t i = 0; i < axis_size; i++) {
        if (axis[i] < 0) {
          axis_[i] = axis[i] + x_dim_size;
        }
      }
    }
    auto out_grad_ = unsqueeze<T>(out_grad, axis_);
    auto out_ = unsqueeze<T>(out, axis_);
    auto out_grad_tmp = out_grad_.expand(IntArray(x_dim));
    auto out_tmp = out_.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  }
  set_output<T>(x_grad_tmp, x_grad);
}

1098 1099 1100 1101 1102 1103 1104
template <typename T>
void assign_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    by_pass<T>(out_grad, x_grad);
  }
}

G
GGBond8488 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
template <typename T>
void erf_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto m_2_sqrt_pi = full<T>(phi::vectorize(x.dims()), M_2_SQRTPI, x.dtype());
    auto neg_one = full<T>(phi::vectorize(x.dims()), -1.0, x.dtype());
    auto neg_tmp = neg_one * x * x;
    auto mul_tmp = m_2_sqrt_pi * exp<T>(neg_tmp);
    set_output<T>(out_grad * mul_tmp, x_grad);
  }
}

H
heyanru 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
template <typename T>
void maximum_grad(const Tensor& x,
                  const Tensor& y,
                  const Tensor& out_grad,
                  int axis,
                  Tensor* x_grad,
                  Tensor* y_grad) {
  if (x_grad) {
    auto x_tmp = cast<T>(greater_than<T>(x, y), out_grad.dtype());
    auto dx_res = out_grad * x_tmp;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, x_grad);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
        set_output<T>(dx_tmp, x_grad);
      }
    } else {
      set_output<T>(dx_res, x_grad);
    }
  }

  if (y_grad) {
    auto y_tmp = cast<T>(less_equal<T>(x, y), out_grad.dtype());
    auto dy_res = out_grad * y_tmp;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, y_grad);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, y_grad);
      }
    } else {
      set_output<T>(dy_res, y_grad);
    }
  }
}

1162
template <typename T>
1163 1164 1165 1166 1167 1168 1169 1170
void dropout_grad(const Tensor& mask,
                  const Tensor& out_grad,
                  const Scalar& p,
                  bool is_test,
                  const std::string& mode,
                  Tensor* x_grad) {
  if (!x_grad) return;
  if (is_test) {
1171
    if (mode == "upscale_in_train") {
1172 1173 1174 1175 1176
      by_pass<T>(out_grad, x_grad);
    } else {
      set_output<T>(out_grad * (1.0 - p.to<float>()), x_grad);
    }
  } else {
1177
    if (mode == "upscale_in_train") {
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
      if (p.to<float>() == 1.0f) {
        set_output<T>(out_grad * 0.0, x_grad);
      } else {
        set_output<T>(
            out_grad * cast<T>(mask, out_grad.dtype()) / (1.0 - p.to<float>()),
            x_grad);
      }
    } else {
      set_output<T>(out_grad * cast<T>(mask, out_grad.dtype()), x_grad);
    }
  }
}
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
template <typename T>
void sin_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = cos<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

template <typename T>
void cos_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = -sin<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
template <typename T>
void batch_norm_grad(const Tensor& x,
                     const Tensor& scale,
                     const Tensor& bias,
                     const paddle::optional<Tensor>& mean_out,
                     const paddle::optional<Tensor>& variance_out,
                     const Tensor& saved_mean,
                     const Tensor& saved_variance,
                     const paddle::optional<Tensor>& reserve_space,
                     const Tensor& out_grad,
                     float momentum,
                     float epsilon,
                     const std::string& data_layout,
                     bool is_test,
                     bool use_global_stats,
                     bool trainable_statistics,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  use_global_stats = is_test || use_global_stats;

  DataLayout data_layout_ = phi::StringToDataLayout(data_layout);

  Tensor x_data = x;
  Tensor out_grad_data = out_grad;
  if (x.dtype() == phi::DataType::FLOAT16) {
    x_data = cast<T>(x, phi::DataType::FLOAT32);
  }
  if (out_grad.dtype() == phi::DataType::FLOAT16) {
    out_grad_data = cast<T>(out_grad, phi::DataType::FLOAT32);
  }
  auto x_dims = x_data.dims();
  const int C = (data_layout_ == DataLayout::kNCHW ? x_dims[1]
                                                   : x_dims[x_dims.size() - 1]);
  int nume = 1;
  for (auto i = 0; i < x_dims.size(); i++) {
    nume = nume * x_dims[i];
  }

  const int nhw = nume / C;

  if (x_dims.size() == 2 && data_layout_ == DataLayout::kNCHW) {
    data_layout_ = DataLayout::kNHWC;
  }

  auto run_var = variance_out.get();
  auto run_mean = mean_out.get();

  Tensor mean_data;
  Tensor rsqrt_var;

  if (use_global_stats) {
    auto eps =
        full<T>(phi::vectorize(run_var.dims()), epsilon, run_var.dtype());
    mean_data = run_mean;
1258
    rsqrt_var = (run_var + eps).pow(-0.5);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
  } else {
    mean_data = saved_mean;
    rsqrt_var = saved_variance;
  }

  // inv_var = 1 / sqrt(var + eps)
  // reduce_axis = [0, 2, 3] (NCHW) [0, 1, 2] (NHWC)
  //
  // d_bias = np.sum(d_y, reduce_axis)
  // d_scale = np.sum((X - mean) / inv_var * dy, reduce_axis)
  //
  // train mode
  // d_x = (1. / nhw) * scale * inv_var
  // *(nhw * d_y - np.sum(d_y, reduce_axis) - (X - mean) * inv_var * inv_var *
  // np.sum(d_y * (X - mean), reduce_axis))
  //
  // test mode
  // d_x = d_y * scale * inv_var

  std::vector<int> nchw_to_nhwc_dim = {0, 2, 3, 1};
  std::vector<int> nhwc_to_nchw_dim = {0, 3, 1, 2};
  auto reduce_axis = IntArray(std::vector<int>{0, 1, 2});
  auto dtype = x_data.dtype();

  switch (data_layout_) {
    case DataLayout::kNCHW: {
      auto nhwc_x = transpose<T>(x_data, nchw_to_nhwc_dim);
      auto nhwc_out_grad = transpose<T>(out_grad_data, nchw_to_nhwc_dim);

      auto x_sub_mean = nhwc_x - mean_data;

      if (x_grad) {
        if (use_global_stats) {
          auto nhwc_x_grad = scale * rsqrt_var * nhwc_out_grad;
          auto nchw_x_grad = transpose<T>(nhwc_x_grad, nhwc_to_nchw_dim);
          set_output<T>(nchw_x_grad, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;
          auto mean_temp1 =
              sum<T>(nhwc_out_grad, reduce_axis, dtype, false) / nhw;

          auto tmp = nhwc_out_grad * x_sub_mean * rsqrt_var * rsqrt_var / nhw;
          auto mean_temp2 = sum<T>(tmp, reduce_axis, dtype, false);
          auto part2 = nhwc_out_grad - mean_temp1 - x_sub_mean * mean_temp2;

          auto x_grad_data = part1 * part2;
          auto nchw_x_grad = transpose<T>(x_grad_data, nhwc_to_nchw_dim);
          if (x.dtype() == phi::DataType::FLOAT16) {
            nchw_x_grad = cast<T>(nchw_x_grad, x.dtype());
          }
          set_output<T>(nchw_x_grad, x_grad);
        }
      }
      if (scale_grad) {
        auto scale_grad_data = sum<T>(
            nhwc_out_grad * x_sub_mean * rsqrt_var, reduce_axis, dtype, false);
        set_output<T>(scale_grad_data, scale_grad);
      }
      if (bias_grad) {
        auto bias_grad_data = sum<T>(nhwc_out_grad, reduce_axis, dtype, false);
        set_output<T>(bias_grad_data, bias_grad);
      }
      break;
    }
    case DataLayout::kNHWC: {
      if (x_grad) {
        auto x_sub_mean = x_data - mean_data;
        if (use_global_stats) {
          auto x_grad_data = scale * rsqrt_var * out_grad_data;
          set_output<T>(x_grad_data, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;
          auto mean_temp1 =
              sum<T>(out_grad_data, reduce_axis, dtype, false) / nhw;

          auto tmp = out_grad_data * x_sub_mean * rsqrt_var * rsqrt_var / nhw;
          auto mean_temp2 = sum<T>(tmp, reduce_axis, dtype, false);
1336
          auto part2 = out_grad_data - mean_temp1 - x_sub_mean * mean_temp2;
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

          auto x_grad_data = part1 * part2;
          if (x.dtype() == phi::DataType::FLOAT16) {
            x_grad_data = cast<T>(x_grad_data, x.dtype());
          }
          set_output<T>(x_grad_data, x_grad);
        }
        if (scale_grad) {
          auto scale_grad_data = sum<T>(out_grad_data * x_sub_mean * rsqrt_var,
                                        reduce_axis,
                                        dtype,
                                        false);
          set_output<T>(scale_grad_data, scale_grad);
        }
        if (bias_grad) {
          auto bias_grad_data =
              sum<T>(out_grad_data, reduce_axis, dtype, false);
          set_output<T>(bias_grad_data, bias_grad);
        }
        break;
      }
    }
    default:
      PADDLE_THROW(phi::errors::InvalidArgument("Unknown storage order: %s",
                                                data_layout));
  }
}

J
Jiabin Yang 已提交
1365 1366
}  // namespace prim
}  // namespace paddle