install_check.py 6.6 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
import os
from . import core


def process_env():
    env = os.environ
    device_list = []
    if env.get('CUDA_VISIBLE_DEVICES') is not None:
        cuda_devices = env['CUDA_VISIBLE_DEVICES']
        if cuda_devices == "" or len(cuda_devices) == 0:
            os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
            device_list = [0, 1]
        elif len(cuda_devices) == 1:
            device_list.append(0)
        elif len(cuda_devices) > 1:
            for i in range(len(cuda_devices.split(","))):
                device_list.append(i)
        return device_list
    else:
        if core.get_cuda_device_count() > 1:
            os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
            return [0, 1]
        else:
            os.environ['CUDA_VISIBLE_DEVICES'] = "0"
            return [0]


device_list = []
if core.is_compiled_with_cuda():
    device_list = process_env()
else:
    device_list = [0, 1]  # for CPU 0,1

from .framework import Program, program_guard, unique_name
J
Jiabin Yang 已提交
49 50 51 52
from .param_attr import ParamAttr
from .initializer import Constant
from . import layers
from . import backward
L
lujun 已提交
53
from .dygraph import Layer, nn
J
Jiabin Yang 已提交
54
from . import executor
55
from . import optimizer
J
Jiabin Yang 已提交
56
from . import core
57 58
from . import compiler
import logging
J
Jiabin Yang 已提交
59 60 61 62 63 64 65 66 67 68
import numpy as np

__all__ = ['run_check']


class SimpleLayer(Layer):
    def __init__(self, name_scope):
        super(SimpleLayer, self).__init__(name_scope)
        self._fc1 = nn.FC(self.full_name(),
                          3,
69
                          param_attr=ParamAttr(initializer=Constant(value=0.1)))
J
Jiabin Yang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82

    def forward(self, inputs):
        x = self._fc1(inputs)
        x = layers.reduce_sum(x)
        return x


def run_check():
    ''' intall check to verify if install is success

    This func should not be called only if you need to verify installation
    '''
    print("Running Verify Fluid Program ... ")
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    use_cuda = False if not core.is_compiled_with_cuda() else True
    place = core.CPUPlace() if not core.is_compiled_with_cuda(
    ) else core.CUDAPlace(0)
    np_inp_single = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
    inp = []
    for i in range(len(device_list)):
        inp.append(np_inp_single)
    np_inp_muti = np.array(inp)
    np_inp_muti = np_inp_muti.reshape(len(device_list), 2, 2)

    def test_parallerl_exe():
        train_prog = Program()
        startup_prog = Program()
        scope = core.Scope()
        if not use_cuda:
            os.environ['CPU_NUM'] = "2"
        with executor.scope_guard(scope):
            with program_guard(train_prog, startup_prog):
                with unique_name.guard():
                    places = []
                    build_strategy = compiler.BuildStrategy()
                    build_strategy.enable_inplace = True
                    build_strategy.memory_optimize = True
                    inp = layers.data(name="inp", shape=[2, 2])
                    simple_layer = SimpleLayer("simple_layer")
                    out = simple_layer(inp)
                    exe = executor.Executor(place)
                    if use_cuda:
                        for i in device_list:
                            places.append(core.CUDAPlace(i))
                    else:
                        places = [core.CPUPlace(), core.CPUPlace()]
                    loss = layers.mean(out)
                    loss.persistable = True
                    optimizer.SGD(learning_rate=0.01).minimize(loss)
                    startup_prog.random_seed = 1
                    compiled_prog = compiler.CompiledProgram(
                        train_prog).with_data_parallel(
                            build_strategy=build_strategy,
                            loss_name=loss.name,
                            places=places)
                    exe.run(startup_prog)

                    exe.run(compiled_prog,
                            feed={inp.name: np_inp_muti},
                            fetch_list=[loss.name])

    def test_simple_exe():
        train_prog = Program()
        startup_prog = Program()
        scope = core.Scope()
        if not use_cuda:
            os.environ['CPU_NUM'] = "1"
        with executor.scope_guard(scope):
            with program_guard(train_prog, startup_prog):
                with unique_name.guard():
                    inp0 = layers.data(
                        name="inp", shape=[2, 2], append_batch_size=False)
                    simple_layer0 = SimpleLayer("simple_layer")
                    out0 = simple_layer0(inp0)
                    param_grads = backward.append_backward(
                        out0, parameter_list=[simple_layer0._fc1._w.name])[0]
                    exe0 = executor.Executor(core.CPUPlace()
                                             if not core.is_compiled_with_cuda()
                                             else core.CUDAPlace(0))
                    exe0.run(startup_prog)
                    exe0.run(feed={inp0.name: np_inp_single},
                             fetch_list=[out0.name, param_grads[1].name])

    test_simple_exe()

    print("Your Paddle Fluid works well on SINGLE GPU or CPU.")
    try:
        test_parallerl_exe()
        print("Your Paddle Fluid works well on MUTIPLE GPU or CPU.")
        print(
            "Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now"
        )
    except Exception as e:
        logging.warning(
            "Your Paddle Fluid has some problem with multiple GPU. This may be caused by:"
            "\n 1. There is only 1 GPU visible on your Device;"
            "\n 2. No.1 or No.2 GPU or both of them are occupied now"
            "\n 3. Wrong installation of NVIDIA-NCCL2, please follow instruction on https://github.com/NVIDIA/nccl-tests "
            "\n to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html"
        )

        print("\n Original Error is: {}".format(e))
        print(
            "Your Paddle Fluid is installed successfully ONLY for SINGLE GPU or CPU! "
            "\n Let's start deep Learning with Paddle Fluid now")