primx.py 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from collections import OrderedDict

17 18
import paddle
from paddle import compat as cpt
19 20
from paddle.fluid import framework as framework
from paddle.fluid.framework import Operator, default_main_program
21
from paddle.incubate.autograd.utils import as_tensors
22

23
from .primops import add, fill_const
L
Ligoml 已提交
24 25 26 27 28 29
from .primreg import (
    lookup_orig2prim,
    lookup_prim2orig,
    op_position_inputs,
    op_position_output,
)
30
from .primrules import _jvp, _orig2prim, _prim2orig, _transpose
L
Ligoml 已提交
31 32 33 34 35 36
from .utils import (
    flatten,
    flatten_and_remove_none,
    get_input_var_list,
    get_output_var_list,
)
37

38 39

def topo_path(xs, ys, block=None):
L
Ligoml 已提交
40
    """Returns the list of ops on the path from `xs` to `ys` in topological
41
    order.
L
Ligoml 已提交
42

43 44 45 46 47 48 49 50 51 52
    TODO(Tongxin): supporting control flow and nested blocks.
    Args:
        xs: a list|tuple of vars as source
        ys: a list|tuple of vars as sink
        block: the program block containing the path, optional
    Returns:
        (path, unused_xs, unreached_ys): a tuple comprised of the resulting op
        path, the unused variables in `xs`, and the unreached variables in `ys`
    """

53
    block = default_main_program().current_block() if block is None else block
54 55 56 57 58 59 60 61

    path = []
    backpath = []
    reached_vars = OrderedDict()
    used_vars = OrderedDict()

    # Initialize reached vars
    for x in xs:
L
Ligoml 已提交
62 63 64
        assert (
            x is None or x.block == block
        ), f'x is not None and x.block != block'
65 66 67
        reached_vars[id(x)] = x

    # Reaching test, returning whether an op is reached from the given input
68 69
    reaching = lambda op: any(
        id(v) in reached_vars
L
Ligoml 已提交
70 71
        for v in flatten_and_remove_none(get_input_var_list(op))
    )
72 73 74 75 76 77 78 79 80 81 82

    # block.ops are supposedly in the order that preserves correct data
    # dependence.
    # Forward pass to identify all reached variables and ops
    for op in block.ops:
        if reaching(op):
            path.append(op)
            for var in flatten_and_remove_none(get_output_var_list(op)):
                reached_vars[id(var)] = var

    used_vars = OrderedDict((id(y), y) for y in ys if id(y) in reached_vars)
83 84
    back_reaching = lambda op: any(
        id(out) in used_vars
L
Ligoml 已提交
85 86
        for out in flatten_and_remove_none(get_output_var_list(op))
    )
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    # Backward pass to find all used variables
    for op in reversed(path):
        if back_reaching(op):
            backpath.append(op)
            for var in flatten_and_remove_none(get_input_var_list(op)):
                used_vars[id(var)] = var

    unused_xs = [x for x in xs if id(x) not in used_vars]
    unreached_ys = [y for y in ys if id(y) not in reached_vars]

    return list(reversed(backpath)), unused_xs, unreached_ys


def output_vars_on_path(path):
L
Ligoml 已提交
102
    """Returns the output variables of all the ops on the path from `xs`
103
    to `ys`.
L
Ligoml 已提交
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    Args:
        path: a list of ops on which to find the output variables

    Returns:
        vars: the output vars
    """
    vars = OrderedDict()
    for op in path:
        for out in flatten_and_remove_none(get_output_var_list(op)):
            vars[id(out)] = out

    return vars


class VarMap(object):
L
Ligoml 已提交
120 121
    """A general map data structure for linking variables to variables.

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    An example is linking variables to their gradients.
    """

    __slots__ = ['name', 'varset', 'tab']

    def __init__(self, name, varset):
        self.name = name
        self.varset = varset
        self.tab = OrderedDict()

    def add(self, key_var, value_var):
        self.tab[id(key_var)] = id(value_var)

    def add_rec(self, key_vars, value_vars):
        if value_vars is None:
            return
        if isinstance(key_vars, paddle.fluid.framework.Variable):
            if not isinstance(value_vars, paddle.fluid.framework.Variable):
                raise TypeError(
L
Ligoml 已提交
141 142
                    f'value_vars must be Variable, but got {type(value_vars)}'
                )
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            self.tab[id(key_vars)] = id(value_vars)
        else:
            assert len(key_vars) == len(value_vars), (
                f'len(key_vars) shoule be equal to len(value_vars), '
                f'but len(key_vars)={len(key_vars)} and len(value_vars)={len(value_vars)}.'
            )
            for key_var, value_var in zip(key_vars, value_vars):
                self.add_rec(key_var, value_var)

    def lookup(self, key_var):
        value_id = self.tab.get(id(key_var))
        if value_id is not None:
            return self.varset.get(value_id)
        else:
            return None

    def delete(self, key_var):
        varid = id(key_var)
        if varid in self.tab:
            del self.tab[id(key_var)]

    def delete_keyvars(self, key_vars):
        for var in key_vars:
            varid = id(var)
            if varid in self.tab:
                del self.tab[varid]

    def delete_valuevars(self, value_vars):
        ids = [id(v) for v in value_vars]
        keys = [k for k, v in self.tab.items() if v in ids]
        for k in keys:
            del self.tab[k]

    def contain_var(self, key_var):
        return self.tab.__contains__(id(key_var))

    def contain_value(self, value_var):
        return id(value_var) in self.tab.values()


183
# TODO(lml): supporting control flow, nested blocks, and block other than current block of main program.
184
class Transform(object):
L
Ligoml 已提交
185 186
    """An object that maintains the state of transformations applied to a
    primitve program."""
187 188

    def __init__(self, block):
L
Ligoml 已提交
189 190
        assert (
            block == default_main_program().current_block()
191
        ), f'only support transform on current block of main program.'
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        self.block = block
        self.vars = self.init_vars(block)
        self.var2dot = VarMap('var2dot', self.vars)
        self.dot2bar = VarMap('dot2var', self.vars)

    def init_vars(self, block):
        vars = OrderedDict()
        for _, var in block.vars.items():
            vars[id(var)] = var
        return vars

    def add_vars(self, new_vars):
        self.vars.update({id(v): v for v in new_vars if v is not None})

    def add_vars_rec(self, new_vars):
        if new_vars is None:
            return
        if isinstance(new_vars, paddle.fluid.framework.Variable):
            self.vars.update({id(new_vars): new_vars})
            return
        if not isinstance(new_vars, list):
            raise TypeError(f'new_vars must be list, but got {type(new_vars)}')
        for var in new_vars:
            self.add_vars_rec(var)

    def erase_ops(self, ordered_indexes):
        block = self.block
        for op_index in reversed(ordered_indexes):
            block.desc._remove_op(op_index, op_index + 1)

        # remove from block.ops
        for op_index in reversed(ordered_indexes):
            del block.ops[op_index]

        block._sync_with_cpp()

    def erase_dots(self, vars_to_erase):
        for var in vars_to_erase:
            if id(var) in self.vars:
                del self.vars[id(var)]
        self.dot2bar.delete_keyvars(vars_to_erase)
        self.var2dot.delete_valuevars(vars_to_erase)
        block = self.block
        for var in vars_to_erase:
            name = var.name
            block.desc._remove_var(cpt.to_bytes(name))
            del block.vars[name]
        block._sync_with_cpp()

    def var2dot_rec(self, vars):
L
Ligoml 已提交
242
        """Lookup var2dot recursively."""
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        if isinstance(vars, paddle.fluid.framework.Variable):
            dot = self.var2dot.lookup(vars)
            return dot

        dots = [self.var2dot_rec(var) for var in vars]
        return dots

    def dot2bar_rec(self, dots):

        if isinstance(dots, paddle.fluid.framework.Variable):
            bar = self.dot2bar.lookup(dots)
            assert bar is not None, 'bar must be not None'
            return bar

        bars = [self.dot2bar_rec(dot) for dot in dots]
        return bars

    def linearize(self, xs, ys, xs_dot=None):
L
Ligoml 已提交
261
        """Performs the linearization transform, a.k.a, forward mode AD
262
        transform, on a primitive lowered program.
L
Ligoml 已提交
263

264 265 266 267 268 269 270 271 272
        Args:
            xs: a list of input variables
            ys: a list of output variables
            xs_dot: optional, a list of gradient input variables. The list size
                must be equal to `len(xs)`. The shape and dtype of each element
                must be the same as in `xs`

        Returns:
            (xs_dot, ys_dot): a tuple of two lists. `xs_dot` is the list of
L
Ligoml 已提交
273
            gradient inputs of the resulting linearized program. `ys_dot` is
274
            the list gradient outputs of the resulting linearized program
L
Ligoml 已提交
275

276 277 278 279 280 281 282
        """
        if xs_dot is None:
            xs_dot = [fill_const(1.0, shape=x.shape, dtype=x.dtype) for x in xs]
            self.add_vars(xs_dot)
        else:
            assert len(xs) == len(xs_dot), (
                f'len(xs) should be equal to len(xs_dot), '
L
Ligoml 已提交
283 284
                f'but len(xs)={len(xs)} and len(xs_dot)={len(xs_dot)}'
            )
285 286 287 288

        for x, dot in zip(xs, xs_dot):
            assert x.dtype == dot.dtype, (
                f'x.dtype should be equal to dot.dtype, '
L
Ligoml 已提交
289 290
                f'but x.dtype={x.dtype} and dot.dtype={dot.dtype}'
            )
291 292
            assert x.shape == dot.shape, (
                f'x.shape should be equal to dot.shape, '
L
Ligoml 已提交
293 294
                f'but x.shape={x.shape} and dot.shape={dot.shape}'
            )
295 296 297 298 299 300 301 302 303
            self.var2dot.add(x, dot)

        path, unused_xs, _ = topo_path(xs, ys, self.block)

        # No need to track unused inputs
        for x in unused_xs:
            self.var2dot.delete(x)

        for op in path:
304
            # An input var may not be on the input-output path, which implies
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
            # there may be None's in `ins_dot`. In this case we place
            # the original input in the position of the otherwise forward
            # gradient.
            ins = op_position_inputs(op)
            jvp_ins = self.var2dot_rec(ins)
            # apply op's forward ad rule
            outs_dot = _jvp(op, *jvp_ins)
            self.add_vars_rec(outs_dot)
            outs = op_position_output(op)
            self.var2dot.add_rec(outs, outs_dot)

        ys_dot = [self.var2dot.lookup(y) for y in ys]
        return xs_dot, ys_dot

    def transpose(self, ys_dot, xs_dot, ys_bar=None, retain_fwd=False):
L
Ligoml 已提交
320
        """Performs the transpose transform, a.k.a, reverse mode AD
321 322 323
        transform, on a linearized primitive program.

        Note, `transpose` is supposed to be used in couple with `linearize`.
L
Ligoml 已提交
324

325 326 327
        Args:
            ys_dot: a list of outputs of the linearized program.
            xs_dot: a list of inputs of the linearized program.
L
Ligoml 已提交
328
            ys_bar: optional, a list of inputs of the resulting transposed
329 330 331 332 333
                program. The list size must be equal to `len(ys_dot)`. The shape
                and dtype of each element must be the same as in `ys_dot`

        Returns:
            (ys_bar, xs_bar): a tuple of two lists. `ys_bar` is the list of
L
Ligoml 已提交
334
            inputs of the resulting transposed program. `xs_bar` is
335
            the list outputs of the resulting transposed program
L
Ligoml 已提交
336

337 338 339 340 341 342 343 344 345 346 347 348
        """
        assert all(v is not None for v in xs_dot), f'`xs_dot` includes None.'
        assert all(v is not None for v in ys_dot), f'`ys_dot` includes None.'

        if ys_bar is None:
            ys_bar = []
            for y in ys_dot:
                ys_bar.append(fill_const(1.0, shape=y.shape, dtype=y.dtype))
            self.add_vars(ys_bar)
        else:
            assert len(ys_dot) == len(ys_bar), (
                f'len(ys_dot) should be equal to len(ys_bar), '
L
Ligoml 已提交
349 350
                f'but len(ys_dot)={len(ys_dot)} and len(ys_bar)={len(ys_bar)}'
            )
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            for y_dot, y_bar in zip(ys_dot, ys_bar):
                assert y_dot.shape == y_bar.shape, (
                    f'y_dot.shape should be equal to y_bar.shape, '
                    f'but y_dot.shape={y_dot.shape} and y_bar.shape={y_bar.shape}'
                )
                assert y_dot.dtype == y_bar.dtype, (
                    f'y_dot.dtype should be equal to y_bar.dtype, '
                    f'but y_dot.dtype={y_dot.dtype} and y_bar.dtype={y_bar.dtype}'
                )

        for dot, bar in zip(ys_dot, ys_bar):
            self.dot2bar.add(dot, bar)

        # find all the relevant forward gradients
        path, unused_xs_dot, _ = topo_path(xs_dot, ys_dot, self.block)

        # No need to track unused inputs
        for dot in unused_xs_dot:
            self.dot2bar.delete(dot)

        dotvars = output_vars_on_path(path)
        dotvars.update((id(var), var) for var in xs_dot)

        is_dot = lambda v: id(v) in dotvars

        for op in reversed(path):
            out = op_position_output(op)
            out_bar_rec = self.dot2bar_rec(out)
            ins_bar_rec = _transpose(op, is_dot, out_bar_rec)

            # TODO(Tongxin): this is hacky. Tuple implies the Transpose rule
            # returns multiple entities. There should be better ways to handle
            # outputs.
            if isinstance(ins_bar_rec, tuple):
                ins_bar_rec = list(ins_bar_rec)
            else:
                ins_bar_rec = [ins_bar_rec]
            self.add_vars_rec(ins_bar_rec)

            ins_bar = flatten(ins_bar_rec)
            ins = flatten(op_position_inputs(op))
            assert len(ins) == len(ins_bar), (
                f'len(ins) should be equal to len(ins_bar), '
L
Ligoml 已提交
394 395
                f'but len(ins)={len(ins)} and len(ins_bar)={len(ins_bar)}'
            )
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

            for dot, bar in zip(ins, ins_bar):
                if bar is not None:
                    # aggregate gradient
                    grad = self.dot2bar.lookup(dot)
                    if grad is None:
                        self.dot2bar.add(dot, bar)
                    else:
                        grad = add(grad, bar)
                        self.add_vars([grad])
                        self.dot2bar.add(dot, grad)

        xs_bar = [self.dot2bar.lookup(x) for x in xs_dot]

        if not retain_fwd and len(path) > 0:
            vars_to_remove = set()
            for op in path:
                vars_to_remove.update(
L
Ligoml 已提交
414 415
                    flatten_and_remove_none(get_output_var_list(op))
                )
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

            op_indexes = []

            block = self.block
            for i, op in enumerate(block.ops):
                if op in path:
                    op_indexes.append(i)
                    path.pop(0)
                    if len(path) == 0:
                        break

            self.erase_ops(op_indexes)
            self.erase_dots(vars_to_remove)

        return ys_bar, xs_bar


433
# TODO(lml): supporting control flow, nested blocks, and block other than current block of main program.
434
def _lower(block, reverse, blacklist):
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    # Some functions which are only used in _lower.
    def bind(args, to_bind, value_table):
        for i in range(len(args)):
            if isinstance(args[i], list):
                bind(args[i], to_bind, value_table)
            elif args[i] is not None and args[i].name in to_bind:
                args[i] = value_table[to_bind[args[i].name]]

    def bind_name(names, to_bind):
        return_list = []
        for name in names:
            if isinstance(name, list):
                return_list.append(bind_name(name, to_bind))
            else:
                return_list.append(to_bind[name] if name in to_bind else name)
        return return_list

    def expand_nested_list(xs):
        return_list = []
        for x in xs:
            if isinstance(x, list):
                return_list = return_list + expand_nested_list(x)
            else:
                return_list.append(x)
        return return_list

    # Step1: Do some preparatory work for lower
    lower_fn = _prim2orig if reverse else _orig2prim
    lookup_fn = lookup_prim2orig if reverse else lookup_orig2prim

    value_table = {}
    to_bind = {}
    to_bind_rev = {}
    for var in block.desc.all_vars():
        value_table[var.name()] = block.var(var.name())

    ops_to_remove = []
    vars_to_remove = set()

    # Step2: Process all ops in the target block
    for op_idx in range(len(block.ops)):
        op = block.ops[op_idx]
        ops_to_remove.append(op_idx)
478
        if lookup_fn(op.type) is not None and op.type not in blacklist:
479 480 481 482
            input_args = get_input_var_list(op)
            bind(input_args, to_bind, value_table)

            for orig_out, new_out in zip(
L
Ligoml 已提交
483 484 485
                expand_nested_list(get_output_var_list(op)),
                expand_nested_list(as_tensors(lower_fn(op, *input_args))),
            ):
486
                assert not (orig_out is None) ^ (
L
Ligoml 已提交
487 488
                    new_out is None
                ), "orig_out and new_out should match."
489 490 491 492 493 494 495 496
                vars_to_remove.add(new_out.name)
                value_table[new_out.name] = new_out
                to_bind[orig_out.name] = new_out.name
                to_bind_rev[new_out.name] = orig_out.name
        else:
            inputs = {}
            for i in range(len(op.input_names)):
                inputs[op.input_names[i]] = bind_name(
L
Ligoml 已提交
497 498
                    op.input(op.input_names[i]), to_bind
                )
499 500 501 502 503 504 505 506 507

            outputs = {}
            for i in range(len(op.output_names)):
                outputs[op.output_names[i]] = op.output(op.output_names[i])

            attrs = {}
            for name in sorted(op.attr_names):
                attrs[name] = op.attr(name)
            from paddle.fluid.dygraph.base import param_guard
L
Ligoml 已提交
508

509 510
            new_op_desc = block.desc.append_op()
            with param_guard(inputs), param_guard(outputs):
L
Ligoml 已提交
511 512 513 514 515 516 517 518
                op = Operator(
                    block=block,
                    desc=new_op_desc,
                    type=op.type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs,
                )
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
            block.ops.append(op)

    # Step3: Do some post-processing work
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)
        del block.ops[op_idx]
    block._sync_with_cpp()

    for op_idx in range(len(block.ops)):
        op = block.ops[op_idx]
        for in_name in op.input_arg_names:
            if in_name in to_bind_rev:
                op._rename_input(in_name, to_bind_rev[in_name])

        for out_name in op.output_arg_names:
            if out_name in to_bind_rev:
                op._rename_output(out_name, to_bind_rev[out_name])

    for var_name in sorted(vars_to_remove):
L
Ligoml 已提交
538 539 540
        assert (
            var_name in to_bind_rev
        ), 'var_name "{}" is not in to_bind_rev.'.format(var_name)
541 542 543 544 545 546 547 548
        if var_name != to_bind_rev[var_name]:
            block.desc._remove_var(cpt.to_bytes(var_name))
            del block.vars[var_name]
    block._sync_with_cpp()


@framework.static_only
def orig2prim(block=None):
L
Ligoml 已提交
549
    """
550 551
    .. note::
        **This API is ONLY available in the static mode.**
552
        **Args block must be None or current block of main program.**
553 554 555 556 557

    All operators in the target block are processed as follows.
    If it is an original operator, it will be transformed into
    one or a series of automatic differential basic operators with
    equivalent function.
L
Ligoml 已提交
558

559
    Args:
560
        block(paddle.static.Block|None, optional): The
561 562 563
            target block to process on. Default None, and will
            process on the current block of main program.
    """
564 565

    block = default_main_program().current_block() if block is None else block
L
Ligoml 已提交
566 567
    assert (
        block == default_main_program().current_block()
568
    ), f'block is neither None nor current block of main program'
569
    _lower(block, reverse=False, blacklist=[])
570 571 572


@framework.static_only
573
def prim2orig(block=None, blacklist=None):
574 575 576
    """
    .. note::
        **ONLY available in the static mode.**
577
        **Args block must be None or current block of main program.**
578 579 580 581 582

    All operators in the target block are processed as follows.
    If it is an automatic differential basic operator, it will be
    transformed into one or a series of original operators with
    equivalent function to support execution.
L
Ligoml 已提交
583

584
    Args:
585
        block(paddle.static.Block|None, optional): The
586 587
            target block to process on. Default None, and will
            process on the current block of main program.
588 589 590 591 592
        blacklist(list[string]|None, optional): The names of automatic
            differential basic operator that will not be transformed
            into original operators. Default None, and the blacklist
            is treated as empty list.

593 594 595 596 597 598
    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.autograd import enable_prim, prim_enabled, prim2orig
L
Ligoml 已提交
599

600 601
            paddle.enable_static()
            enable_prim()
L
Ligoml 已提交
602

603 604 605 606 607 608 609
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradients = False
            y = x * x
            dy_dx = paddle.static.gradients(y, x)
            if prim_enabled():
                prim2orig()
    """
610 611

    block = default_main_program().current_block() if block is None else block
L
Ligoml 已提交
612 613
    assert (
        block == default_main_program().current_block()
614
    ), f'block is neither None nor current block of main program'
615 616
    blacklist = [] if blacklist is None else blacklist
    _lower(block, reverse=True, blacklist=blacklist)