test_conj_api.cc 2.5 KB
Newer Older
C
chentianyu03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

#include "paddle/pten/api/include/api.h"

#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

namespace paddle {
namespace tests {

namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, conj) {
  // 1. create tensor
33
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
C
chentianyu03 已提交
34 35
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
36
      alloc.get(),
C
chentianyu03 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      pten::DenseTensorMeta(pten::DataType::COMPLEX64,
                            framework::make_ddim({3, 10}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<paddle::complex64>();

  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = paddle::complex64(i * 10 + j, i * 10 + j);
    }
  }

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::conj(x);

  // 3. check result
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
  ASSERT_EQ(out.dims()[1], 10);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::COMPLEX64);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto actual_result = dense_out->data<paddle::complex64>();

  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = paddle::complex64(i * 10 + j, i * 10 + j);
      ASSERT_NEAR(actual_result[i * 10 + j].real, 1.0 * (i * 10 + j), 1e-6f);
      ASSERT_NEAR(actual_result[i * 10 + j].imag, -1.0 * (i * 10 + j), 1e-6f);
    }
  }
}

}  // namespace tests
}  // namespace paddle