test_parallel_op.py 7.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yang Yang 已提交
15
import unittest
16

17
import paddle.fluid as fluid
18
from paddle.fluid.layers.device import get_places
19
import paddle.fluid.profiler as profiler
Y
Yang Yu 已提交
20 21 22 23
import numpy


class BaseParallelForTest(unittest.TestCase):
Y
Yang Yu 已提交
24 25 26 27 28 29 30 31 32
    def run_test(self, callback, feed, fetch):
        """
        Run the unittest for parallel.for
        Args:
            callback(callable): A callable function returns a generator. There 
                are two yields in the generator function. The first yield 
                returns the data layers, and the second yield returns the loss. 
                The modified data variables will be sent back during the first 
                yield.
33

Y
Yang Yu 已提交
34 35 36 37 38
            feed(dict): The executor feeding dictionary.
            fetch(list|basestr): The fetch name lists. 

        Returns:
            None
39

Y
Yang Yu 已提交
40 41 42 43 44
        Raises:
            AssertionError when the computation of cpu, parallel.for in cpu, 
                gpu, parallel.for in gpu are different.

        """
Y
Yang Yu 已提交
45
        cpu = fluid.CPUPlace()
Y
Yang Yu 已提交
46
        result_cpu = self._run_test_impl_(
Y
Yang Yu 已提交
47 48 49 50 51
            callback=callback,
            feed=feed,
            fetch=fetch,
            place=cpu,
            use_parallel=False)
Y
Yang Yu 已提交
52
        result_cpu_parallel = self._run_test_impl_(
Y
Yang Yu 已提交
53 54 55 56 57
            callback=callback,
            feed=feed,
            fetch=fetch,
            place=cpu,
            use_parallel=True)
58
        if fluid.core.is_compiled_with_cuda():
Y
Yang Yu 已提交
59
            gpu = fluid.CUDAPlace(0)
Y
Yang Yu 已提交
60
            result_gpu = self._run_test_impl_(
Y
Yang Yu 已提交
61 62 63 64
                callback=callback,
                feed=feed,
                fetch=fetch,
                place=gpu,
65 66
                use_parallel=False,
                use_gpu=True)
Y
Yang Yu 已提交
67
            result_gpu_parallel = self._run_test_impl_(
Y
Yang Yu 已提交
68 69 70 71
                callback=callback,
                feed=feed,
                fetch=fetch,
                place=gpu,
72 73
                use_parallel=True,
                use_gpu=True)
Y
Yang Yang 已提交
74 75 76 77 78 79
            result_gpu_nccl = self._run_test_impl_(
                callback=callback,
                feed=feed,
                fetch=fetch,
                place=gpu,
                use_parallel=True,
80 81
                use_nccl=True,
                use_gpu=True)
Y
Yang Yu 已提交
82
            self._assert_same_(fetch, result_cpu, result_cpu_parallel,
Y
Yang Yang 已提交
83
                               result_gpu, result_gpu_parallel, result_gpu_nccl)
Y
Yang Yu 已提交
84 85
        else:
            self._assert_same_(fetch, result_cpu, result_cpu_parallel)
Y
Yang Yu 已提交
86

Y
Yang Yang 已提交
87 88 89 90 91 92
    def _run_test_impl_(self,
                        callback,
                        feed,
                        fetch,
                        place,
                        use_parallel=False,
93 94
                        use_nccl=False,
                        use_gpu=False):
Y
Yang Yu 已提交
95 96 97 98 99 100 101 102 103 104
        """
        Run a single test, returns the fetch values
        Args:
            place(Place): the computation place. 
            use_parallel(bool): Whether use parallel.for or not. 

        Returns:
            Fetched numpy arrays.

        """
105
        if isinstance(fetch, str):
Y
Yang Yu 已提交
106
            fetch = [fetch]
Y
Yang Yu 已提交
107 108 109 110 111 112 113 114 115 116
        main = fluid.Program()
        startup = fluid.Program()
        # Fix seed
        main.random_seed = 10
        startup.random_seed = 10

        with fluid.program_guard(main, startup):
            generator = callback()
            # Automatically insert parallel do if use_parallel = True
            if use_parallel:
117 118
                thread_num = fluid.core.get_cuda_device_count(
                ) if use_gpu else 8
119
                places = get_places(thread_num)
Y
Yang Yang 已提交
120
                pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
Y
Yang Yu 已提交
121 122
                data = next(generator)

W
Wu Yi 已提交
123
                if isinstance(data, fluid.framework.Variable):
Y
Yang Yu 已提交
124
                    data = [data]
Y
Yang Yu 已提交
125

Y
Yang Yu 已提交
126
                with pd.do():
127
                    ins = list(map(pd.read_input, data))
Y
Yang Yu 已提交
128 129
                    if len(ins) == 1:
                        ins = ins[0]
Y
Yang Yu 已提交
130
                    loss = generator.send(ins)  # patch input
Y
Yang Yu 已提交
131 132 133 134 135
                    pd.write_output(loss)

                loss = pd()
            else:
                data = next(generator)
Y
Yang Yu 已提交
136 137
                loss = generator.send(data)
            self.assertIsNotNone(loss)
Y
Yu Yang 已提交
138
            avg_loss = fluid.layers.mean(loss)
Y
Yang Yu 已提交
139 140 141 142
            fluid.backward.append_backward(loss=avg_loss)

        exe = fluid.Executor(place)
        exe.run(startup)
143 144 145 146 147 148
        if use_gpu:
            profile_type = 'GPU'
        else:
            profile_type = 'CPU'
        with profiler.profiler(profile_type, 'total', '/tmp/profiler'):
            return exe.run(main, feed=feed, fetch_list=fetch)
Y
Yang Yu 已提交
149

Y
Yang Yu 已提交
150
    def _assert_same_(self, fetch, *args):
Y
Yang Yu 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164
        """
        Assert the return values of `run_test` are same.
        Args:
            fetch: Fetch list. Used for print error message
            *args: The fetch result lists of each situations.

        Returns:
            None
            
        Raises:
            AssertionError

        """

Y
Yang Yu 已提交
165
        def _impl_(a, b, fetch_id, item_id):
Y
Yang Yang 已提交
166 167 168
            item_str = [
                'CPU', 'ParallelCPU', 'GPU', 'ParallelGPU', 'ParallelGPUNCCL'
            ]
169 170 171 172
            flag = numpy.allclose(a, b, rtol=0.1, atol=1e-3)
            self.assertTrue(flag,
                            "The {0} are different in {1}, {2} vs {3}".format(
                                fetch[fetch_id], item_str[item_id], a, b))
Y
Yang Yu 已提交
173 174 175 176 177 178

        for i, items in enumerate(zip(*args)):
            self.assertGreater(len(items), 0)
            for j in range(1, len(items)):
                _impl_(items[0], items[j], fetch_id=i, item_id=j)

Y
Yang Yu 已提交
179 180

class ParallelOpTest(BaseParallelForTest):
Y
Yu Yang 已提交
181 182 183 184 185
    @staticmethod
    def __network__():
        x = fluid.layers.data(shape=[784], dtype='float32', name='img')
        x = yield x
        hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
Y
Yu Yang 已提交
186
        hidden = fluid.layers.batch_norm(input=hidden)
Y
Yu Yang 已提交
187
        loss = fluid.layers.mean(hidden)
Y
Yu Yang 已提交
188
        yield loss
Y
Yang Yu 已提交
189

Y
Yang Yang 已提交
190
    def test_simple_fc(self):
Y
Yu Yang 已提交
191
        self.run_test(
Y
Yang Yang 已提交
192
            callback=self.__network__,
Y
Yang Yang 已提交
193 194 195
            feed={
                'img': numpy.random.random(size=(51, 784)).astype('float32')
            },
Y
Yang Yang 已提交
196
            fetch=['fc1.w@GRAD'])
Y
Yu Yang 已提交
197

Y
Yang Yang 已提交
198 199 200 201 202 203
    def test_fc_with_tiny_data(self):
        self.run_test(
            callback=self.__network__,
            feed={'img': numpy.random.random(size=(1, 784)).astype('float32')},
            fetch=['fc1.w@GRAD'])

Y
Yang Yang 已提交
204

Y
Yang Yang 已提交
205 206 207
class ParallelOpTestMultipleInput(BaseParallelForTest):
    @staticmethod
    def __network__():
Y
Yang Yu 已提交
208 209 210 211
        x = fluid.layers.data(
            shape=[784], dtype='float32', name='img1', stop_gradient=False)
        y = fluid.layers.data(
            shape=[784], dtype='float32', name='img2', stop_gradient=False)
Y
Yang Yang 已提交
212 213
        yield [x, y]
        x = x + y
Y
Yang Yang 已提交
214 215 216
        hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
        hidden2 = fluid.layers.fc(input=hidden1, size=200, param_attr='fc2.w')
        hidden3 = fluid.layers.fc(input=hidden2, size=200, param_attr='fc3.w')
Y
Yu Yang 已提交
217
        loss = fluid.layers.mean(hidden3)
Y
Yang Yang 已提交
218 219 220 221 222 223 224 225 226
        yield loss

    def test_simple_fc(self):
        self.run_test(
            callback=self.__network__,
            feed={
                'img1': numpy.random.random(size=(51, 784)).astype('float32'),
                'img2': numpy.random.random(size=(51, 784)).astype('float32')
            },
Y
Yang Yang 已提交
227
            fetch=['fc1.w@GRAD', 'fc2.w@GRAD', 'fc3.w@GRAD'])
Y
Yang Yang 已提交
228 229


Y
Yang Yang 已提交
230 231
if __name__ == '__main__':
    unittest.main()