“bf2650158e34bdf630f82be1839c920c86df3d60”上不存在“git@gitcode.net:Crayonxin2000/Paddle.git”
op_handle_base.h 4.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
X
Xin Pan 已提交
17
#include <string>
Z
Zeng Jinle 已提交
18 19
#include <unordered_map>
#include <unordered_set>
X
Xin Pan 已提交
20
#include <vector>
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/var_handle.h"
X
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/node.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/platform/device_context.h"
Y
Yu Yang 已提交
24 25
#include "paddle/fluid/platform/macros.h"

Y
Yu Yang 已提交
26 27 28
namespace paddle {
namespace framework {

29 30 31
class Scope;

namespace details {
32

X
clean  
Xin Pan 已提交
33 34
// Wraps ir::Node and provide helper utilities.
// It's responsible for populating necessary fields of ir::Node.
Y
Yu Yang 已提交
35 36
class OpHandleBase {
 public:
Z
Zeng Jinle 已提交
37 38 39 40 41 42 43
  /**
   * NOTE(zjl): Some op should have higher priority than others.
   * The higher priority op would run first without switching
   * threads in Executor.
   */
  enum Priority { kHighest = 0, kNormal = 1 };

X
Xin Pan 已提交
44
  // Owned by `node`. No need to be deleted explicitly.
X
clean1  
Xin Pan 已提交
45 46 47
  explicit OpHandleBase(ir::Node *node) : node_(node) {
    node_->WrappedBy(this);
  }
Y
Yu Yang 已提交
48

Z
Zeng Jinle 已提交
49
  virtual ~OpHandleBase() PADDLE_MAY_THROW;
X
Xin Pan 已提交
50

Y
Yu Yang 已提交
51 52
  std::string DebugString() const;

Z
Zeng Jinle 已提交
53 54
  virtual Priority GetPriority() const { return kNormal; }

Y
Yu Yang 已提交
55 56
  virtual std::string Name() const = 0;

57
  void Run(bool use_cuda);
Y
Yu Yang 已提交
58

C
chengduoZH 已提交
59
  virtual void RecordWaitEventOnCtx(platform::DeviceContext *waited_ctx);
Y
Yu Yang 已提交
60

Y
Yu Yang 已提交
61 62 63 64
  void AddInput(VarHandleBase *in);

  void AddOutput(VarHandleBase *out);

65 66 67
  // This method adds the wait events of all the input on all the device
  // context.
  // NODE: This Wait is asynchronous operation.
C
chengduoZH 已提交
68 69
  virtual void WaitInputVarGenerated();

70 71 72
  // This method adds the wait events of all the input on the specified device
  // context.
  // NODE: This Wait is asynchronous operation.
C
chengduoZH 已提交
73 74 75 76
  virtual void WaitInputVarGenerated(const platform::Place &place);

  virtual bool NeedWait(VarHandleBase *in_var);

X
Polish  
Xin Pan 已提交
77 78 79
  // If the Op involves data transfer of multiple devices that
  // will likely block other computations.
  virtual bool IsMultiDeviceTransfer() { return false; }
X
Xin Pan 已提交
80

X
Xin Pan 已提交
81
  const platform::DeviceContext *DeviceContext(platform::Place place) {
S
sneaxiy 已提交
82 83
    auto it = dev_ctxes_.find(place);
    return it != dev_ctxes_.end() ? it->second : nullptr;
X
Xin Pan 已提交
84
  }
Y
Yancey1989 已提交
85 86 87
  const std::map<platform::Place, platform::DeviceContext *> &DeviceContext() {
    return dev_ctxes_;
  }
X
Xin Pan 已提交
88 89 90 91 92 93 94

  void SetDeviceContext(platform::Place place, platform::DeviceContext *ctx_) {
    dev_ctxes_[place] = ctx_;
  }

  const std::vector<VarHandleBase *> &Inputs() const { return inputs_; }

95 96 97 98 99 100 101 102
  size_t NoDupInputSize() const {
    std::unordered_set<VarHandleBase *> res;
    for (auto *var : inputs_) {
      res.emplace(var);
    }
    return res.size();
  }

Y
Stash  
yuyang18 已提交
103 104
  size_t NotReadyInputSize() const;

X
Xin Pan 已提交
105 106
  const std::vector<VarHandleBase *> &Outputs() const { return outputs_; }

C
chengduoZH 已提交
107 108
  size_t NoDummyInputSize() const;

X
Xin Pan 已提交
109 110
  ir::Node *Node() { return node_; }

111 112
  const ir::Node *Node() const { return node_; }

113 114 115
  void SetLocalExecScopes(
      const std::unordered_map<Scope *, Scope *> &scope_map);

Y
Yu Yang 已提交
116
 protected:
117 118
  virtual std::vector<Scope *> GetLocalScopes() = 0;

Y
Yu Yang 已提交
119 120
  void RunAndRecordEvent(const std::function<void()> &callback);

121 122 123
  void RunAndRecordEvent(platform::Place p,
                         const std::function<void()> &callback);

Y
Yu Yang 已提交
124
  virtual void RunImpl() = 0;
X
Xin Pan 已提交
125

126 127
  virtual void InitCUDA();

X
Xin Pan 已提交
128
  ir::Node *node_;
X
Xin Pan 已提交
129 130
  std::vector<VarHandleBase *> inputs_;
  std::vector<VarHandleBase *> outputs_;
131
  std::map<platform::Place, platform::DeviceContext *> dev_ctxes_;
X
Xin Pan 已提交
132

133 134
  std::vector<Scope *> local_exec_scopes_;

X
Xin Pan 已提交
135 136 137 138 139
#ifdef PADDLE_WITH_CUDA
  std::unordered_map<int, cudaEvent_t> events_;
#endif

  DISABLE_COPY_AND_ASSIGN(OpHandleBase);
Y
Yu Yang 已提交
140 141 142 143 144
};

}  // namespace details
}  // namespace framework
}  // namespace paddle