test_complex_getitem.py 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg


class TestComplexGetitemLayer(unittest.TestCase):
    def setUp(self):
        self._places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            self._places.append(fluid.CUDAPlace(0))

    def test_case1(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case2(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case3(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1][2]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1][2]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case4(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1][0:3]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1][0:3]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case5(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1][0:4:2]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1][0:4:2]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)

    def test_case6(self):
        x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4)
        x_np_slice = x_np[0][1:3][0:4:2]

        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x_np)
                x_var_slice = x_var[0][1:3][0:4:2]

            np.testing.assert_allclose(x_var_slice.numpy(), x_np_slice)


if __name__ == '__main__':
    unittest.main()