networks.html 63.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Networks &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../../genindex.html"/>
        <link rel="search" title="搜索" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../../index.html"/>
        <link rel="up" title="Model Configuration" href="../model_configs.html"/>
        <link rel="next" title="Parameter Attribute" href="attr.html"/>
        <link rel="prev" title="Pooling" href="pooling.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89 90
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
91
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_cn.html">MOBILE</a></li>
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
115 116 117
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li>
118 119
</ul>
</li>
120
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
121 122 123 124 125 126 127 128 129
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
130
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_cn.html">PaddlePaddle分布式训练</a></li>
131 132 133
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
134
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
135 136
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
137
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
138 139 140 141 142 143 144 145 146 147 148 149
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../model_configs.html">模型配置</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="layer.html">Layers</a></li>
150
<li class="toctree-l3"><a class="reference internal" href="evaluators.html">Evaluators</a></li>
151 152 153 154 155 156
<li class="toctree-l3"><a class="reference internal" href="optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="pooling.html">Pooling</a></li>
<li class="toctree-l3 current"><a class="current reference internal" href="#">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
157 158 159 160 161 162
<li class="toctree-l2"><a class="reference internal" href="../data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/dataset.html">Dataset</a></li>
</ul>
</li>
163 164 165
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">训练与应用</a></li>
</ul>
</li>
166 167 168 169 170 171 172 173
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
174
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_cn.html">MOBILE</a><ul>
175 176 177
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
178 179
</ul>
</li>
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_cn.html">API</a> > </li>
      
        <li><a href="../model_configs.html">Model Configuration</a> > </li>
      
    <li>Networks</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="networks">
<h1>Networks<a class="headerlink" href="#networks" title="永久链接至标题"></a></h1>
<p>The v2.networks module contains pieces of neural network that combine multiple layers.</p>
<div class="section" id="nlp">
<h2>NLP<a class="headerlink" href="#nlp" title="永久链接至标题"></a></h2>
<div class="section" id="sequence-conv-pool">
<h3>sequence_conv_pool<a class="headerlink" href="#sequence-conv-pool" title="永久链接至标题"></a></h3>
220
<dl class="function">
221
<dt>
222
<code class="descclassname">paddle.v2.networks.</code><code class="descname">sequence_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
223
<dd><p>Text convolution pooling group.</p>
224 225 226 227 228 229
<p>Text input =&gt; Context Projection =&gt; FC Layer =&gt; Pooling =&gt; Output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
230 231
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
232 233 234
<li><strong>context_len</strong> (<em>int</em>) &#8211; context projection length. See
context_projection&#8217;s document.</li>
<li><strong>hidden_size</strong> (<em>int</em>) &#8211; FC Layer size.</li>
235
<li><strong>context_start</strong> (<em>int|None</em>) &#8211; context start position. See
236
context_projection&#8217;s context_start.</li>
237
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling layer type. See pooling_layer&#8217;s document.</li>
238
<li><strong>context_proj_layer_name</strong> (<em>basestring</em>) &#8211; context projection layer name.
239
None if user don&#8217;t care.</li>
240 241
<li><strong>context_proj_param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; padding parameter attribute of context projection layer.
If false, it means padding always be zero.</li>
242
<li><strong>fc_layer_name</strong> (<em>basestring</em>) &#8211; fc layer name. None if user don&#8217;t care.</li>
243 244 245 246 247
<li><strong>fc_param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; fc layer parameter attribute. None if user don&#8217;t care.</li>
<li><strong>fc_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; fc bias parameter attribute. False if no bias,
None if user don&#8217;t care.</li>
<li><strong>fc_act</strong> (<em>BaseActivation</em>) &#8211; fc layer activation type. None means tanh.</li>
<li><strong>pool_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; pooling layer bias attr. False if no bias.
248
None if user don&#8217;t care.</li>
249 250 251
<li><strong>fc_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; fc layer extra attribute.</li>
<li><strong>context_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; context projection layer extra attribute.</li>
<li><strong>pool_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; pooling layer extra attribute.</li>
252 253 254
</ul>
</td>
</tr>
255
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output.</p>
256 257
</td>
</tr>
258
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
259 260 261 262 263 264 265 266 267
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="text-conv-pool">
<span id="api-trainer-config-helpers-network-text-conv-pool"></span><h3>text_conv_pool<a class="headerlink" href="#text-conv-pool" title="永久链接至标题"></a></h3>
268
<dl class="function">
269
<dt>
270
<code class="descclassname">paddle.v2.networks.</code><code class="descname">text_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
271
<dd><p>Text convolution pooling group.</p>
272 273 274 275 276 277
<p>Text input =&gt; Context Projection =&gt; FC Layer =&gt; Pooling =&gt; Output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
278 279
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
280 281 282
<li><strong>context_len</strong> (<em>int</em>) &#8211; context projection length. See
context_projection&#8217;s document.</li>
<li><strong>hidden_size</strong> (<em>int</em>) &#8211; FC Layer size.</li>
283
<li><strong>context_start</strong> (<em>int|None</em>) &#8211; context start position. See
284
context_projection&#8217;s context_start.</li>
285
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling layer type. See pooling_layer&#8217;s document.</li>
286
<li><strong>context_proj_layer_name</strong> (<em>basestring</em>) &#8211; context projection layer name.
287
None if user don&#8217;t care.</li>
288 289
<li><strong>context_proj_param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; padding parameter attribute of context projection layer.
If false, it means padding always be zero.</li>
290
<li><strong>fc_layer_name</strong> (<em>basestring</em>) &#8211; fc layer name. None if user don&#8217;t care.</li>
291 292 293 294 295
<li><strong>fc_param_attr</strong> (<em>ParameterAttribute|None</em>) &#8211; fc layer parameter attribute. None if user don&#8217;t care.</li>
<li><strong>fc_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; fc bias parameter attribute. False if no bias,
None if user don&#8217;t care.</li>
<li><strong>fc_act</strong> (<em>BaseActivation</em>) &#8211; fc layer activation type. None means tanh.</li>
<li><strong>pool_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; pooling layer bias attr. False if no bias.
296
None if user don&#8217;t care.</li>
297 298 299
<li><strong>fc_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; fc layer extra attribute.</li>
<li><strong>context_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; context projection layer extra attribute.</li>
<li><strong>pool_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; pooling layer extra attribute.</li>
300 301 302
</ul>
</td>
</tr>
303
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output.</p>
304 305
</td>
</tr>
306
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
307 308 309 310 311 312 313 314 315 316 317 318
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="images">
<h2>Images<a class="headerlink" href="#images" title="永久链接至标题"></a></h2>
<div class="section" id="img-conv-bn-pool">
<h3>img_conv_bn_pool<a class="headerlink" href="#img-conv-bn-pool" title="永久链接至标题"></a></h3>
319
<dl class="function">
320
<dt>
321
<code class="descclassname">paddle.v2.networks.</code><code class="descname">img_conv_bn_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
322
<dd><p>Convolution, batch normalization, pooling group.</p>
323
<p>Img input =&gt; Conv =&gt; BN =&gt; Pooling =&gt; Output.</p>
324 325 326 327 328
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>pool_size</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; see batch_norm_layer for details.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_stride</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_bias_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>num_channel</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>shared_bias</strong> (<em>bool</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_layer_attr</strong> (<em>ExtraLayerOutput</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>bn_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; see batch_norm_layer for details.</li>
<li><strong>bn_bias_attr</strong> (<em>ParameterAttribute</em>) &#8211; see batch_norm_layer for details.</li>
<li><strong>bn_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see batch_norm_layer for details.</li>
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_padding</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_pool_layer for details.</li>
350 351 352
</ul>
</td>
</tr>
353
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output</p>
354 355
</td>
</tr>
356
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
357 358 359 360 361 362 363 364 365
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="img-conv-group">
<h3>img_conv_group<a class="headerlink" href="#img-conv-group" title="永久链接至标题"></a></h3>
366
<dl class="function">
367
<dt>
368
<code class="descclassname">paddle.v2.networks.</code><code class="descname">img_conv_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
369 370 371 372 373 374
<dd><p>Image Convolution Group, Used for vgg net.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
375 376
<li><strong>conv_batchnorm_drop_rate</strong> (<em>list</em>) &#8211; if conv_with_batchnorm[i] is true,
conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm.</li>
377 378
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
<li><strong>conv_num_filter</strong> (<em>list|tuple</em>) &#8211; list of output channels num.</li>
379 380 381 382 383
<li><strong>pool_size</strong> (<em>int</em>) &#8211; pooling filter size.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; input channels num.</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; convolution padding size.</li>
<li><strong>conv_filter_size</strong> (<em>int</em>) &#8211; convolution filter size.</li>
<li><strong>conv_act</strong> (<em>BaseActivation</em>) &#8211; activation funciton after convolution.</li>
384 385
<li><strong>conv_with_batchnorm</strong> (<em>list</em>) &#8211; if conv_with_batchnorm[i] is true,
there is a batch normalization operation after each convolution.</li>
386 387
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; pooling stride size.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; pooling type.</li>
388
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; param attribute of convolution layer,
389
None means default attribute.</li>
390 391 392
</ul>
</td>
</tr>
393
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output</p>
394 395
</td>
</tr>
396
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
397 398 399 400 401 402 403 404 405
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-img-conv-pool">
<span id="api-trainer-config-helpers-network-simple-img-conv-pool"></span><h3>simple_img_conv_pool<a class="headerlink" href="#simple-img-conv-pool" title="永久链接至标题"></a></h3>
406
<dl class="function">
407
<dt>
408
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_img_conv_pool</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
409
<dd><p>Simple image convolution and pooling group.</p>
410
<p>Img input =&gt; Conv =&gt; Pooling =&gt; Output.</p>
411 412 413 414 415
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
<li><strong>name</strong> (<em>basestring</em>) &#8211; group name.</li>
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
<li><strong>filter_size</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>pool_size</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_type</strong> (<em>BasePoolingType</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_stride</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_padding</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>bias_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>num_channel</strong> (<em>int</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>shared_bias</strong> (<em>bool</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>conv_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_conv_layer for details.</li>
<li><strong>pool_stride</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_padding</strong> (<em>int</em>) &#8211; see img_pool_layer for details.</li>
<li><strong>pool_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; see img_pool_layer for details.</li>
434 435 436
</ul>
</td>
</tr>
437
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output</p>
438 439
</td>
</tr>
440
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
441 442 443 444 445 446
</td>
</tr>
</tbody>
</table>
</dd></dl>

447 448 449
</div>
<div class="section" id="small-vgg">
<h3>small_vgg<a class="headerlink" href="#small-vgg" title="永久链接至标题"></a></h3>
450 451 452
</div>
<div class="section" id="vgg-16-network">
<h3>vgg_16_network<a class="headerlink" href="#vgg-16-network" title="永久链接至标题"></a></h3>
453
<dl class="function">
454
<dt>
455
<code class="descclassname">paddle.v2.networks.</code><code class="descname">vgg_16_network</code><span class="sig-paren">(</span><em>input_image</em>, <em>num_channels</em>, <em>num_classes=1000</em><span class="sig-paren">)</span></dt>
456 457 458 459 460 461
<dd><p>Same model from <a class="reference external" href="https://gist.github.com/ksimonyan/211839e770f7b538e2d8">https://gist.github.com/ksimonyan/211839e770f7b538e2d8</a></p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
462 463 464
<li><strong>num_classes</strong> (<em>int</em>) &#8211; number of class.</li>
<li><strong>input_image</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
<li><strong>num_channels</strong> (<em>int</em>) &#8211; input channels num.</li>
465 466 467
</ul>
</td>
</tr>
468 469 470 471
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
472 473 474 475 476 477 478 479 480 481 482 483 484 485
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="recurrent">
<h2>Recurrent<a class="headerlink" href="#recurrent" title="永久链接至标题"></a></h2>
<div class="section" id="lstm">
<h3>LSTM<a class="headerlink" href="#lstm" title="永久链接至标题"></a></h3>
<div class="section" id="lstmemory-unit">
<h4>lstmemory_unit<a class="headerlink" href="#lstmemory-unit" title="永久链接至标题"></a></h4>
486
<dl class="function">
487
<dt>
488
<code class="descclassname">paddle.v2.networks.</code><code class="descname">lstmemory_unit</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
489 490 491
<dd><p>lstmemory_unit defines the caculation process of a LSTM unit during a
single time step. This function is not a recurrent layer, so it can not be
directly used to process sequence input. This function is always used in
492 493 494 495 496 497
recurrent_group (see layers.py for more details) to implement attention
mechanism.</p>
<p>Please refer to  <strong>Generating Sequences With Recurrent Neural Networks</strong>
for more details about LSTM. The link goes as follows:
.. _Link: <a class="reference external" href="https://arxiv.org/abs/1308.0850">https://arxiv.org/abs/1308.0850</a></p>
<div class="math">
498
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
499 500 501
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">lstm_step</span> <span class="o">=</span> <span class="n">lstmemory_unit</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
                           <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
502 503 504
                           <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                           <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">(),</span>
                           <span class="n">state_act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">())</span>
505 506 507 508 509 510 511
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>out_memory</strong> (<em>LayerOutput | None</em>) &#8211; The output of previous time step.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The lstmemory unit name.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The lstmemory unit size.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; The parameter attribute for the weights in
input to hidden projection.
None means default attribute.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; The last activiation type of lstm.</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; The gate activiation type of lstm.</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; The state activiation type of lstm.</li>
<li><strong>input_proj_bias_attr</strong> (<em>ParameterAttribute|bool|None</em>) &#8211; The parameter attribute for the bias in
input to hidden projection.
False or None means no bias.
If this parameter is set to True,
the bias is initialized to zero.</li>
<li><strong>input_proj_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; The extra layer attribute for
input to hidden projection of the LSTM unit,
such as dropout, error clipping.</li>
<li><strong>lstm_bias_attr</strong> (<em>ParameterAttribute|True|None</em>) &#8211; The parameter attribute for the bias in lstm layer.
False or None means no bias.
If this parameter is set to True,
the bias is initialized to zero.</li>
<li><strong>lstm_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; The extra attribute of lstm layer.</li>
535 536 537
</ul>
</td>
</tr>
538
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The lstmemory unit name.</p>
539 540
</td>
</tr>
541
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
542 543 544 545 546 547 548 549 550
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="lstmemory-group">
<h4>lstmemory_group<a class="headerlink" href="#lstmemory-group" title="永久链接至标题"></a></h4>
551
<dl class="function">
552
<dt>
553
<code class="descclassname">paddle.v2.networks.</code><code class="descname">lstmemory_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
554
<dd><p>lstm_group is a recurrent_group version of Long Short Term Memory. It
555 556
does exactly the same calculation as the lstmemory layer (see lstmemory in
layers.py for the maths) does. A promising benefit is that LSTM memory
557
cell states(or hidden states) in every time step are accessible to the
558
user. This is especially useful in attention model. If you do not need to
559
access the internal states of the lstm and merely use its outputs,
560 561 562 563
it is recommended to use the lstmemory, which is relatively faster than
lstmemory_group.</p>
<p>NOTE: In PaddlePaddle&#8217;s implementation, the following input-to-hidden
multiplications:
564 565
<span class="math">\(W_{x_i}x_{t}\)</span> , <span class="math">\(W_{x_f}x_{t}\)</span>,
<span class="math">\(W_{x_c}x_t\)</span>, <span class="math">\(W_{x_o}x_{t}\)</span> are not done in lstmemory_unit to
566
speed up the calculations. Consequently, an additional mixed_layer with
567 568 569 570
full_matrix_projection must be included before lstmemory_unit is called.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">lstm_step</span> <span class="o">=</span> <span class="n">lstmemory_group</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
                            <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
571 572 573
                            <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                            <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">(),</span>
                            <span class="n">state_act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">())</span>
574 575 576 577 578 579 580
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; Input layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The lstmemory group size.</li>
<li><strong>name</strong> (<em>basestring</em>) &#8211; The name of lstmemory group.</li>
<li><strong>out_memory</strong> (<em>LayerOutput | None</em>) &#8211; The output of previous time step.</li>
<li><strong>reverse</strong> (<em>bool</em>) &#8211; Process the input in a reverse order or not.</li>
<li><strong>param_attr</strong> (<em>ParameterAttribute</em>) &#8211; The parameter attribute for the weights in
input to hidden projection.
None means default attribute.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; The last activiation type of lstm.</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; The gate activiation type of lstm.</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; The state activiation type of lstm.</li>
<li><strong>input_proj_bias_attr</strong> (<em>ParameterAttribute|bool|None</em>) &#8211; The parameter attribute for the bias in
input to hidden projection.
False or None means no bias.
If this parameter is set to True,
the bias is initialized to zero.</li>
<li><strong>input_proj_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; The extra layer attribute for
input to hidden projection of the LSTM unit,
such as dropout, error clipping.</li>
<li><strong>lstm_bias_attr</strong> (<em>ParameterAttribute|True|None</em>) &#8211; The parameter attribute for the bias in lstm layer.
False or None means no bias.
If this parameter is set to True,
the bias is initialized to zero.</li>
<li><strong>lstm_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; The extra attribute of lstm layer.</li>
605 606 607 608 609 610
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the lstmemory group.</p>
</td>
</tr>
611
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
612 613 614 615 616 617 618 619 620
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-lstm">
<h4>simple_lstm<a class="headerlink" href="#simple-lstm" title="永久链接至标题"></a></h4>
621
<dl class="function">
622
<dt>
623
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_lstm</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
624
<dd><p>Simple LSTM Cell.</p>
625 626
<p>It just combines a mixed layer with fully_matrix_projection and a lstmemory
layer. The simple lstm cell was implemented with follow equations.</p>
627 628
<div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
629 630
<p>Please refer to <strong>Generating Sequences With Recurrent Neural Networks</strong> for more
details about lstm. <a class="reference external" href="http://arxiv.org/abs/1308.0850">Link</a> is here.</p>
631 632 633 634 635 636
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; lstm layer name.</li>
637
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; layer&#8217;s input.</li>
638
<li><strong>size</strong> (<em>int</em>) &#8211; lstm layer size.</li>
639 640
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>mat_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of matrix projection in mixed layer.</li>
641
<li><strong>bias_param_attr</strong> (<em>ParameterAttribute|False</em>) &#8211; bias parameter attribute. False means no bias, None
642
means default bias.</li>
643 644 645 646 647 648
<li><strong>inner_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of lstm cell.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; last activiation type of lstm.</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of lstm.</li>
<li><strong>state_act</strong> (<em>BaseActivation</em>) &#8211; state activiation type of lstm.</li>
<li><strong>mixed_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra attribute of mixed layer.</li>
<li><strong>lstm_cell_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; extra attribute of lstm.</li>
649 650 651
</ul>
</td>
</tr>
652
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">layer&#8217;s output.</p>
653 654
</td>
</tr>
655
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
656 657 658 659 660 661 662 663 664
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="bidirectional-lstm">
<h4>bidirectional_lstm<a class="headerlink" href="#bidirectional-lstm" title="永久链接至标题"></a></h4>
665
<dl class="function">
666
<dt>
667
<code class="descclassname">paddle.v2.networks.</code><code class="descname">bidirectional_lstm</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
668
<dd><p>A bidirectional_lstm is a recurrent unit that iterates over the input
669 670
sequence both in forward and backward orders, and then concatenate two
outputs to form a final output. However, concatenation of two outputs
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
is not the only way to form the final output, you can also, for example,
just add them together.</p>
<p>Please refer to  <strong>Neural Machine Translation by Jointly Learning to Align
and Translate</strong> for more details about the bidirectional lstm.
The link goes as follows:
.. _Link: <a class="reference external" href="https://arxiv.org/pdf/1409.0473v3.pdf">https://arxiv.org/pdf/1409.0473v3.pdf</a></p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">bi_lstm</span> <span class="o">=</span> <span class="n">bidirectional_lstm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">input1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; bidirectional lstm layer name.</li>
687
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
688
<li><strong>size</strong> (<em>int</em>) &#8211; lstm layer size.</li>
689
<li><strong>return_seq</strong> (<em>bool</em>) &#8211; If set False, the last time step of output are
690
concatenated and returned.
691 692
If set True, the entire output sequences in forward
and backward directions are concatenated and returned.</li>
693 694 695
</ul>
</td>
</tr>
696
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
697 698
</td>
</tr>
699
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
700 701 702 703 704 705 706 707 708 709 710 711
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="gru">
<h3>GRU<a class="headerlink" href="#gru" title="永久链接至标题"></a></h3>
<div class="section" id="gru-unit">
<h4>gru_unit<a class="headerlink" href="#gru-unit" title="永久链接至标题"></a></h4>
712
<dl class="function">
713
<dt>
714
<code class="descclassname">paddle.v2.networks.</code><code class="descname">gru_unit</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
715 716 717
<dd><p>gru_unit defines the calculation process of a gated recurrent unit during a single
time step. This function is not a recurrent layer, so it can not be
directly used to process sequence input. This function is always used in
718 719 720 721 722 723 724 725
the recurrent_group (see layers.py for more details) to implement attention
mechanism.</p>
<p>Please see grumemory in layers.py for the details about the maths.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
726
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
727
<li><strong>memory_boot</strong> (<em>LayerOutput | None</em>) &#8211; the initialization state of the LSTM cell.</li>
728 729
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
730 731 732
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activation type of gru</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activation type or gru</li>
<li><strong>gru_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; Extra attribute of the gru layer.</li>
733 734 735 736 737 738
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru output layer.</p>
</td>
</tr>
739
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
740 741 742 743 744 745 746 747 748
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="gru-group">
<h4>gru_group<a class="headerlink" href="#gru-group" title="永久链接至标题"></a></h4>
749
<dl class="function">
750
<dt>
751
<code class="descclassname">paddle.v2.networks.</code><code class="descname">gru_group</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
752
<dd><p>gru_group is a recurrent_group version of Gated Recurrent Unit. It
753 754 755
does exactly the same calculation as the grumemory layer does. A promising
benefit is that gru hidden states are accessible to the user. This is
especially useful in attention model. If you do not need to access
756
any internal state and merely use the outputs of a GRU, it is recommended
757 758 759
to use the grumemory, which is relatively faster.</p>
<p>Please see grumemory in layers.py for more detail about the maths.</p>
<p>The example usage is:</p>
760
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">gru_group</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span>
761
                <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
762 763
                <span class="n">act</span><span class="o">=</span><span class="n">TanhActivation</span><span class="p">(),</span>
                <span class="n">gate_act</span><span class="o">=</span><span class="n">SigmoidActivation</span><span class="p">())</span>
764 765 766 767 768 769 770
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
771
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
772
<li><strong>memory_boot</strong> (<em>LayerOutput | None</em>) &#8211; the initialization state of the LSTM cell.</li>
773 774
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
775 776 777 778 779 780
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activiation type of gru</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of gru</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias parameter attribute of gru layer,
False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; Extra attribute of the gru layer.</li>
781 782 783 784 785 786
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
787
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
788 789 790 791 792 793 794 795 796
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-gru">
<h4>simple_gru<a class="headerlink" href="#simple-gru" title="永久链接至标题"></a></h4>
797
<dl class="function">
798
<dt>
799
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_gru</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
800
<dd><p>You may see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
801 802 803
simple_gru in network.py. The reason why there are so many interfaces is
that we have two ways to implement recurrent neural network. One way is to
use one complete layer to implement rnn (including simple rnn, gru and lstm)
804
with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But
805 806 807 808 809 810
the multiplication operation <span class="math">\(W x_t\)</span> is not computed in these layers.
See details in their interfaces in layers.py.
The other implementation is to use an recurrent group which can ensemble a
series of layers to compute rnn step by step. This way is flexible for
attenion mechanism or other complex connections.</p>
<ul class="simple">
811
<li>gru_step_layer: only compute rnn by one step. It needs an memory as input
812
and can be used in recurrent group.</li>
813
<li>gru_unit: a wrapper of gru_step_layer with memory.</li>
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
<li>gru_group: a GRU cell implemented by a combination of multiple layers in
recurrent group.
But <span class="math">\(W x_t\)</span> is not done in group.</li>
<li>gru_memory: a GRU cell implemented by one layer, which does same calculation
with gru_group and is faster than gru_group.</li>
<li>simple_gru: a complete GRU implementation inlcuding <span class="math">\(W x_t\)</span> and
gru_group. <span class="math">\(W\)</span> contains <span class="math">\(W_r\)</span>, <span class="math">\(W_z\)</span> and <span class="math">\(W\)</span>, see
formula in grumemory.</li>
</ul>
<p>The computational speed is that, grumemory is relatively better than
gru_group, and gru_group is relatively better than simple_gru.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">simple_gru</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
834
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
835 836
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
837 838 839 840 841 842
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activiation type of gru</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of gru</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias parameter attribute of gru layer,
False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; Extra attribute of the gru layer.</li>
843 844 845 846 847 848
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
849
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
850 851 852 853 854 855 856 857 858
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="simple-gru2">
<h4>simple_gru2<a class="headerlink" href="#simple-gru2" title="永久链接至标题"></a></h4>
859
<dl class="function">
860
<dt>
861
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_gru2</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
862 863
<dd><p>simple_gru2 is the same with simple_gru, but using grumemory instead.
Please refer to grumemory in layers.py for more detail about the math.
864 865 866 867 868 869 870 871 872 873
simple_gru2 is faster than simple_gru.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">gru</span> <span class="o">=</span> <span class="n">simple_gru2</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">layer1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">256</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
874
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
875 876
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the gru group.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; hidden size of the gru.</li>
877 878 879 880 881 882
<li><strong>reverse</strong> (<em>bool</em>) &#8211; process the input in a reverse order or not.</li>
<li><strong>act</strong> (<em>BaseActivation</em>) &#8211; activiation type of gru</li>
<li><strong>gate_act</strong> (<em>BaseActivation</em>) &#8211; gate activiation type of gru</li>
<li><strong>gru_bias_attr</strong> (<em>ParameterAttribute|False|None</em>) &#8211; bias parameter attribute of gru layer,
False means no bias, None means default bias.</li>
<li><strong>gru_layer_attr</strong> (<em>ExtraLayerAttribute</em>) &#8211; Extra attribute of the gru layer.</li>
883 884 885 886 887 888
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">the gru group.</p>
</td>
</tr>
889
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
890 891 892 893 894 895 896 897 898
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="bidirectional-gru">
<h4>bidirectional_gru<a class="headerlink" href="#bidirectional-gru" title="永久链接至标题"></a></h4>
899
<dl class="function">
900
<dt>
901
<code class="descclassname">paddle.v2.networks.</code><code class="descname">bidirectional_gru</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
902
<dd><p>A bidirectional_gru is a recurrent unit that iterates over the input
903
sequence both in forward and backward orders, and then concatenate two
904 905 906 907 908 909 910 911 912 913 914 915 916
outputs to form a final output. However, concatenation of two outputs
is not the only way to form the final output, you can also, for example,
just add them together.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">bi_gru</span> <span class="o">=</span> <span class="n">bidirectional_gru</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="p">[</span><span class="n">input1</span><span class="p">],</span> <span class="n">size</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; bidirectional gru layer name.</li>
917
<li><strong>input</strong> (<em>LayerOutput</em>) &#8211; input layer.</li>
918
<li><strong>size</strong> (<em>int</em>) &#8211; gru layer size.</li>
919
<li><strong>return_seq</strong> (<em>bool</em>) &#8211; If set False, the last time step of output are
920
concatenated and returned.
921 922
If set True, the entire output sequences in forward
and backward directions are concatenated and returned.</li>
923 924 925
</ul>
</td>
</tr>
926
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">LayerOutput object.</p>
927 928
</td>
</tr>
929
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
930 931 932 933 934 935 936 937 938 939
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="simple-attention">
<h3>simple_attention<a class="headerlink" href="#simple-attention" title="永久链接至标题"></a></h3>
940
<dl class="function">
941
<dt>
942
<code class="descclassname">paddle.v2.networks.</code><code class="descname">simple_attention</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
943
<dd><p>Calculate and return a context vector with attention mechanism.
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
Size of the context vector equals to size of the encoded_sequence.</p>
<div class="math">
\[ \begin{align}\begin{aligned}a(s_{i-1},h_{j}) &amp; = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})\\e_{i,j} &amp; = a(s_{i-1}, h_{j})\\a_{i,j} &amp; = \frac{exp(e_{i,j})}{\sum_{k=1}^{T_x}{exp(e_{i,k})}}\\c_{i} &amp; = \sum_{j=1}^{T_{x}}a_{i,j}h_{j}\end{aligned}\end{align} \]</div>
<p>where <span class="math">\(h_{j}\)</span> is the jth element of encoded_sequence,
<span class="math">\(U_{a}h_{j}\)</span> is the jth element of encoded_proj
<span class="math">\(s_{i-1}\)</span> is decoder_state
<span class="math">\(f\)</span> is weight_act, and is set to tanh by default.</p>
<p>Please refer to <strong>Neural Machine Translation by Jointly Learning to
Align and Translate</strong> for more details. The link is as follows:
<a class="reference external" href="https://arxiv.org/abs/1409.0473">https://arxiv.org/abs/1409.0473</a>.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">context</span> <span class="o">=</span> <span class="n">simple_attention</span><span class="p">(</span><span class="n">encoded_sequence</span><span class="o">=</span><span class="n">enc_seq</span><span class="p">,</span>
                           <span class="n">encoded_proj</span><span class="o">=</span><span class="n">enc_proj</span><span class="p">,</span>
                           <span class="n">decoder_state</span><span class="o">=</span><span class="n">decoder_prev</span><span class="p">,)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; name of the attention model.</li>
966
<li><strong>softmax_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of sequence softmax
967 968
that is used to produce attention weight.</li>
<li><strong>weight_act</strong> (<em>BaseActivation</em>) &#8211; activation of the attention model.</li>
969 970
<li><strong>encoded_sequence</strong> (<em>LayerOutput</em>) &#8211; output of the encoder</li>
<li><strong>encoded_proj</strong> (<em>LayerOutput</em>) &#8211; attention weight is computed by a feed forward neural
971 972 973 974 975
network which has two inputs : decoder&#8217;s hidden state
of previous time step and encoder&#8217;s output.
encoded_proj is output of the feed-forward network for
encoder&#8217;s output. Here we pre-compute it outside
simple_attention for speed consideration.</li>
976 977
<li><strong>decoder_state</strong> (<em>LayerOutput</em>) &#8211; hidden state of decoder in previous time step</li>
<li><strong>transform_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; parameter attribute of the feed-forward
978 979 980 981 982
network that takes decoder_state as inputs to
compute attention weight.</li>
</ul>
</td>
</tr>
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">a context vector</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="dot-product-attention">
<h3>dot_product_attention<a class="headerlink" href="#dot-product-attention" title="永久链接至标题"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.networks.</code><code class="descname">dot_product_attention</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Calculate and return a context vector with dot-product attention mechanism.
The dimension of the context vector equals to that of the attended_sequence.</p>
<div class="math">
\[ \begin{align}\begin{aligned}a(s_{i-1},h_{j}) &amp; = s_{i-1}^\mathrm{T} h_{j}\\e_{i,j} &amp; = a(s_{i-1}, h_{j})\\a_{i,j} &amp; = \frac{exp(e_{i,j})}{\sum_{k=1}^{T_x}{exp(e_{i,k})}}\\c_{i} &amp; = \sum_{j=1}^{T_{x}}a_{i,j}z_{j}\end{aligned}\end{align} \]</div>
<p>where <span class="math">\(h_{j}\)</span> is the jth element of encoded_sequence,
<span class="math">\(z_{j}\)</span> is the jth element of attended_sequence,
<span class="math">\(s_{i-1}\)</span> is transformed_state.</p>
<p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">context</span> <span class="o">=</span> <span class="n">dot_product_attention</span><span class="p">(</span><span class="n">encoded_sequence</span><span class="o">=</span><span class="n">enc_seq</span><span class="p">,</span>
                                <span class="n">attended_sequence</span><span class="o">=</span><span class="n">att_seq</span><span class="p">,</span>
                                <span class="n">transformed_state</span><span class="o">=</span><span class="n">state</span><span class="p">,)</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>basestring</em>) &#8211; A prefix attached to the name of each layer that defined inside
the dot_product_attention.</li>
<li><strong>softmax_param_attr</strong> (<em>ParameterAttribute</em>) &#8211; The parameter attribute of sequence softmax
that is used to produce attention weight.</li>
<li><strong>encoded_sequence</strong> (<em>LayerOutput</em>) &#8211; The output hidden vectors of the encoder.</li>
<li><strong>attended_sequence</strong> (<em>LayerOutput</em>) &#8211; The attention weight is computed by a feed forward neural
network which has two inputs : decoder&#8217;s transformed hidden
state of previous time step and encoder&#8217;s output.
attended_sequence is the sequence to be attended.</li>
<li><strong>transformed_state</strong> (<em>LayerOutput</em>) &#8211; The transformed hidden state of decoder in previous time step.
Since the dot-product operation will be performed on it and the
encoded_sequence, their dimensions must be equal. For flexibility,
we suppose transformations of the decoder&#8217;s hidden state have been
done outside dot_product_attention and no more will be performed
inside. Then users can use either the original or transformed one.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">The context vector.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">LayerOutput</p>
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="attr.html" class="btn btn-neutral float-right" title="Parameter Attribute" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="pooling.html" class="btn btn-neutral" title="Pooling" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
1093 1094
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
1095 1096 1097 1098 1099 1100
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../../_static/translations.js"></script>
1101
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>