pattern_rewrite_test.cc 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
16
#include <cstdint>
17 18 19 20
#include <iostream>
#include <numeric>
#include <sstream>
#include <vector>
21

22
#include "paddle/fluid/ir/dialect/pd_attribute.h"
23
#include "paddle/fluid/ir/transforms/transform_general_functions.h"
24
#include "paddle/ir/core/builder.h"
25 26
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_dialect.h"
27
#include "paddle/ir/core/builtin_op.h"
28
#include "paddle/ir/core/cast_utils.h"
29
#include "paddle/ir/core/dialect.h"
30
#include "paddle/ir/core/enforce.h"
31
#include "paddle/ir/core/ir_context.h"
32
#include "paddle/ir/core/op_info.h"
33
#include "paddle/ir/core/parameter.h"
34
#include "paddle/ir/core/program.h"
35
#include "paddle/ir/core/value.h"
36 37 38 39
#include "paddle/ir/pass/pass.h"
#include "paddle/ir/pass/pass_manager.h"
#include "paddle/ir/pattern_rewrite/frozen_rewrite_pattern_set.h"
#include "paddle/ir/pattern_rewrite/pattern_applicator.h"
40
#include "paddle/ir/pattern_rewrite/pattern_match.h"
41
#include "paddle/ir/pattern_rewrite/pattern_rewrite_driver.h"
42
#include "paddle/ir/transforms/dce.h"
43

44 45 46
// NOTE(zhangbo9674): File pd_op.h is generated by op_gen.py, see details in
// paddle/fluid/ir/dialect/CMakeLists.txt.
#include "paddle/fluid/ir/dialect/pd_op.h"
47 48

#include "paddle/fluid/ir/dialect/pd_dialect.h"
49
#include "paddle/fluid/ir/dialect/pd_type.h"
50
#include "paddle/phi/core/ddim.h"
51 52 53 54 55 56 57 58

// Define op1.
class Operation1 : public ir::Op<Operation1> {
 public:
  using Op::Op;
  static const char *name() { return "test.Operation1"; }
  static constexpr uint32_t attributes_num = 2;
  static const char *attributes_name[attributes_num];
59
  void Verify();
60 61
  static void InferShape() { VLOG(2) << "This is op2's InferShape interface."; }
};
62

63 64 65 66 67 68 69 70 71 72 73
void Operation1::Verify() {
  auto &attributes = this->attributes();
  if (attributes.count("op2_attr1") == 0 ||
      (!attributes.at("op2_attr1").isa<ir::StrAttribute>())) {
    throw("Type of attribute: parameter_name is not right.");
  }
  if (attributes.count("op2_attr2") == 0 ||
      (!attributes.at("op2_attr2").isa<ir::StrAttribute>())) {
    throw("Type of attribute: parameter_name is not right.");
  }
}
74 75
const char *Operation1::attributes_name[attributes_num] = {"op2_attr1",
                                                           "op2_attr2"};
76 77
IR_DECLARE_EXPLICIT_TYPE_ID(Operation1)
IR_DEFINE_EXPLICIT_TYPE_ID(Operation1)
78 79 80 81 82 83 84 85 86 87 88 89 90

// Define a dialect, op1 and op2 will be registered by this dialect.
class TestDialect : public ir::Dialect {
 public:
  explicit TestDialect(ir::IrContext *context)
      : ir::Dialect(name(), context, ir::TypeId::get<TestDialect>()) {
    initialize();
  }
  static const char *name() { return "test"; }

 private:
  void initialize() { RegisterOps<Operation1>(); }
};
91 92
IR_DECLARE_EXPLICIT_TYPE_ID(TestDialect)
IR_DEFINE_EXPLICIT_TYPE_ID(TestDialect)
93 94 95 96 97 98 99 100 101

// TODO(wilber): Add logical when ir support erase, replace or update.
class TestPatternRewrite : public ir::OpRewritePattern<Operation1> {
 public:
  using ir::OpRewritePattern<Operation1>::OpRewritePattern;

  void Rewrite(Operation1 op, ir::PatternRewriter &rewriter) const override {}
  bool Match(Operation1 op) const override { return false; }
};
102

103 104 105 106 107 108 109 110 111 112
class TestPatternRewrite2 : public ir::OpRewritePattern<Operation1> {
 public:
  using ir::OpRewritePattern<Operation1>::OpRewritePattern;
  bool MatchAndRewrite(
      Operation1 op,
      ir::PatternRewriter &rewriter) const override {  // NOLINT
    return false;
  }
};

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
TEST(PatternRewrite, PatternBenefit) {
  ir::PatternBenefit benefit1(1);
  EXPECT_EQ(benefit1.benefit(), 1U);
  ir::PatternBenefit benefit2(2);
  EXPECT_EQ(benefit2.benefit(), 2U);

  EXPECT_TRUE(benefit2 > benefit1);
  EXPECT_TRUE(benefit2 >= benefit1);
  EXPECT_TRUE(benefit1 < benefit2);
  EXPECT_TRUE(benefit1 <= benefit2);
  EXPECT_TRUE(benefit1 != benefit2);
  ir::PatternBenefit benefit3(2);
  EXPECT_TRUE(benefit2 == benefit3);
}

TEST(RewritePattern, RewritePatternSet) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  ir::IrContext *ctx = ir::IrContext::Instance();
  ctx->GetOrRegisterDialect<ir::BuiltinDialect>();
  auto *test_dialect = ctx->GetOrRegisterDialect<TestDialect>();
  test_dialect->RegisterOp<Operation1>();

  ir::RewritePatternSet ps(ctx);
  ps.Add<TestPatternRewrite>(ctx, 1);
  EXPECT_EQ(ps.native_patterns().size(), 1U);
  EXPECT_TRUE(ps.native_patterns().back()->debug_labels().empty());
  EXPECT_EQ(ps.native_patterns().back()->benefit(), 1U);
  ps.AddWithLabel<TestPatternRewrite2>({"TestPatternRewrite2"}, ctx, 2);
  EXPECT_EQ(ps.native_patterns().size(), 2U);
  EXPECT_EQ(ps.native_patterns().back()->debug_labels()[0],
            "TestPatternRewrite2");
  EXPECT_EQ(ps.native_patterns().back()->benefit(), 2U);

  ps.Clear();
  ps.Add<TestPatternRewrite, TestPatternRewrite2>(ctx, 2);
  EXPECT_EQ(ps.native_patterns().size(), 2U);
  EXPECT_EQ(ps.native_patterns()[0]->benefit(), 2U);
  EXPECT_EQ(ps.native_patterns()[1]->benefit(), 2U);
}
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

// TODO(wilber): Add actual case.
// TEST(PatternRewrite, PatternApplicator) {
//   ir::IrContext *ctx = ir::IrContext::Instance();
//   ctx->GetOrRegisterDialect<ir::BuiltinDialect>();
//   auto *test_dialect = ctx->GetOrRegisterDialect<TestDialect>();
//   test_dialect->RegisterOp<Operation1>();
//   ir::RewritePatternSet ps(ctx);
//   ps.Add<TestPatternRewrite, TestPatternRewrite2>(ctx, 2);
//   ir::FrozenRewritePatternSet frozen_set(std::move(ps));
//   ir::PatternApplicator applicator(frozen_set);
//   applicator.ApplyDefaultCostModel();
// }

// // TODO(wilber): Add actual case.
TEST(PatternRewrite, FrozenRewritePatternSet) {
  ir::FrozenRewritePatternSet frozen_set;
  EXPECT_TRUE(frozen_set.match_any_op_native_patterns().empty());
  EXPECT_TRUE(frozen_set.op_specific_native_patterns().empty());

  ir::IrContext *ctx = ir::IrContext::Instance();
  ctx->GetOrRegisterDialect<ir::BuiltinDialect>();
  auto *test_dialect = ctx->GetOrRegisterDialect<TestDialect>();
  test_dialect->RegisterOp<Operation1>();
  ir::RewritePatternSet ps(ctx);
  ps.Add<TestPatternRewrite, TestPatternRewrite2>(ctx, 2);

  ir::FrozenRewritePatternSet frozen_set2(std::move(ps));
  EXPECT_TRUE(frozen_set2.match_any_op_native_patterns().empty());
  const auto &pattern_maps = frozen_set2.op_specific_native_patterns();
  EXPECT_EQ(pattern_maps.size(), 1U);
  EXPECT_EQ(pattern_maps.at(ctx->GetRegisteredOpInfo("test.Operation1")).size(),
            2U);
}

class TransposePatternRewrite
    : public ir::OpRewritePattern<paddle::dialect::TransposeOp> {
 public:
  using ir::OpRewritePattern<paddle::dialect::TransposeOp>::OpRewritePattern;

  bool MatchAndRewrite(paddle::dialect::TransposeOp op,
                       ir::PatternRewriter &rewriter) const override {
193
    auto prev_op = ir::GetDefiningOpForInput<0>(op);
194 195 196 197 198 199 200 201
    std::vector<int> axis_last = GetAxis(op);
    auto prev_trans_op = prev_op->dyn_cast<paddle::dialect::TransposeOp>();
    if (prev_trans_op) {
      std::vector<int> axis_first = GetAxis(prev_trans_op);
      IR_ENFORCE(axis_first.size() == axis_last.size(),
                 "tranpose op's perm rank should be same.");
      auto new_perm = GetPerm(axis_first, axis_last);
      rewriter.SetInsertionPoint(op);
202 203 204
      auto new_transpose_op = rewriter.Build<paddle::dialect::TransposeOp>(
          ir::GetDefiningOpForInput<0>(prev_trans_op)->result(0), new_perm);
      rewriter.ReplaceOp(op, {new_transpose_op.out()});
205 206 207 208 209 210 211 212
      return true;
    }

    return false;
  }

 private:
  std::vector<int> GetAxis(paddle::dialect::TransposeOp op) const {
213
    auto array_attr = op.attribute<ir::ArrayAttribute>("perm").data();
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    std::vector<int> axis(array_attr.size());
    for (size_t i = 0; i < array_attr.size(); ++i) {
      axis[i] = array_attr[i].dyn_cast<ir::Int32Attribute>().data();
    }
    return axis;
  }

  std::vector<int> GetPerm(const std::vector<int> &perm1,
                           const std::vector<int> &perm2) const {
    int n = perm1.size();
    std::vector<int> axis(n), axis1(n), axis2(n);
    std::iota(axis.begin(), axis.end(), 0);
    for (int i = 0; i < n; ++i) {
      axis1[i] = axis[perm1[i]];
    }
    for (int i = 0; i < n; ++i) {
      axis2[i] = axis1[perm2[i]];
    }
    return axis2;
  }
};

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
class Conv2dBnFusePattern
    : public ir::OpRewritePattern<paddle::dialect::BatchNormOp> {
 public:
  using ir::OpRewritePattern<paddle::dialect::BatchNormOp>::OpRewritePattern;
  bool MatchAndRewrite(
      paddle::dialect::BatchNormOp op,
      ir::PatternRewriter &rewriter) const override {  // NOLINT
    // The next op should be batch_norm.
    paddle::dialect::Conv2dOp conv2d_op =
        ir::GetDefiningOpForInput(op)->dyn_cast<paddle::dialect::Conv2dOp>();
    if (!conv2d_op) return false;

    ir::OpResult conv2d_out = conv2d_op.out();
    if (!conv2d_out.HasOneUse()) return false;

    ir::Value conv2d_filter = conv2d_op.filter();

    // ir::GetParameterOp filter_parameter_op =
    //     conv2d_filter.GetDefiningOp()->dyn_cast<ir::GetParameterOp>();
    // if (!filter_parameter_op) return false;

    ir::OpResult conv2d_filter_result = conv2d_filter.dyn_cast<ir::OpResult>();
    IR_ENFORCE(conv2d_filter_result);

    ir::Value bn_input = op.x();
    IR_ENFORCE(bn_input == conv2d_out);

    ir::Value bn_mean = op.mean();
    ir::Value bn_variance = op.variance();
    ir::Value bn_scale = op.scale();
    ir::Value bn_bias = op.bias();

    ir::OpResult bn_mean_result = bn_mean.dyn_cast<ir::OpResult>();
    IR_ENFORCE(bn_mean_result);
    ir::OpResult bn_variance_result = bn_variance.dyn_cast<ir::OpResult>();
    IR_ENFORCE(bn_variance_result);
    ir::OpResult bn_scale_result = bn_scale.dyn_cast<ir::OpResult>();
    IR_ENFORCE(bn_scale_result);
    ir::OpResult bn_bias_result = bn_bias.dyn_cast<ir::OpResult>();
    IR_ENFORCE(bn_bias_result);

    // --- deal with filter ---
    rewriter.SetInsertionPoint(conv2d_op);
    phi::DDim bn_variance_shape =
        bn_variance.type().dyn_cast<paddle::dialect::DenseTensorType>().dims();
    float epsilon = op.attribute<ir::FloatAttribute>("epsilon").data();
    paddle::dialect::FullOp full_op = rewriter.Build<paddle::dialect::FullOp>(
        phi::vectorize(bn_variance_shape), epsilon);
    paddle::dialect::AddOp add_op = rewriter.Build<paddle::dialect::AddOp>(
        bn_variance_result, full_op.out());
    paddle::dialect::SqrtOp sqrt_op =
        rewriter.Build<paddle::dialect::SqrtOp>(add_op.out());
    paddle::dialect::DivideOp div_op =
        rewriter.Build<paddle::dialect::DivideOp>(bn_scale_result,
                                                  sqrt_op.out());

    // reshape scale
    phi::DDim conv2d_filter_shape = ir::GetShapeFromValue(conv2d_filter);
    phi::DDim bn_scale_shape =
        bn_scale.type().dyn_cast<paddle::dialect::DenseTensorType>().dims();
    std::vector<int64_t> bn_scale_new_shape(conv2d_filter_shape.size(), 1);
    bn_scale_new_shape[0] = bn_scale_shape[0];

    paddle::dialect::ReshapeOp reshape_scale_op =
        rewriter.Build<paddle::dialect::ReshapeOp>(div_op.out(),
                                                   bn_scale_new_shape);
    // new filter --> mul_op.out()
    paddle::dialect::MultiplyOp mul_op =
        rewriter.Build<paddle::dialect::MultiplyOp>(conv2d_filter_result,
                                                    reshape_scale_op.out());
    // TODO(liuyuanle): Use rewriter.
    conv2d_op->op_operand(1).set_source(mul_op.out());

    // --- deal with bias ---
    rewriter.SetInsertionPoint(op);
    paddle::dialect::MultiplyOp mul_bias_op =
        rewriter.Build<paddle::dialect::MultiplyOp>(bn_mean_result,
                                                    div_op.out());
    // new bias --> sub_op.out()
    paddle::dialect::SubtractOp sub_op =
        rewriter.Build<paddle::dialect::SubtractOp>(bn_bias_result,
                                                    mul_bias_op.out());

    // reshape new bias
    phi::DDim conv2d_out_shape = ir::GetShapeFromValue(conv2d_out);
    std::vector<int64_t> new_bias_new_shape(conv2d_out_shape.size(), 1);
    std::string data_format =
        conv2d_op.attribute<ir::StrAttribute>("data_format").data();

    IR_ENFORCE(data_format == "NCHW", "Only support NCHW now.");
    new_bias_new_shape[0] = conv2d_out_shape[0];
    new_bias_new_shape[1] = conv2d_out_shape[1];

    paddle::dialect::ReshapeOp reshape_bias_op =
        rewriter.Build<paddle::dialect::ReshapeOp>(sub_op.out(),
                                                   new_bias_new_shape);

    paddle::dialect::AddOp add_bias_op = rewriter.Build<paddle::dialect::AddOp>(
        conv2d_out, reshape_bias_op.out());
    auto next_op = ir::GetFirstUseOperationForOutput<0>(op);
    rewriter.ReplaceAllUsesWith(next_op->operand(0), add_bias_op.out());

    rewriter.EraseOp(op);
    return true;
  }
};

343 344 345 346 347 348
class TestPass : public ir::Pass {
 public:
  TestPass() : ir::Pass("TestPass", 1) {}
  void Run(ir::Operation *op) override {
    ir::RewritePatternSet ps(op->ir_context());
    ps.Add<TransposePatternRewrite>(op->ir_context());
349 350
    ps.Add<Conv2dBnFusePattern>(op->ir_context());

351 352 353
    ir::FrozenRewritePatternSet frozen_ps(std::move(ps));
    ir::GreedyRewriteConfig cfg;
    cfg.use_top_down_traversal = true;
354
    cfg.max_iterations = 10;
355 356 357 358 359 360 361 362 363
    ir::ApplyPatternsGreedily(op->region(0), frozen_ps, cfg);
  }

  bool CanApplyOn(ir::Operation *op) const override {
    return op->name() == "builtin.module" && op->num_regions() > 0;
  }
};

void BuildProgram(ir::Builder &builder) {  // NOLINT
364
  paddle::dialect::FullOp full_input_op =
365 366 367 368
      builder.Build<paddle::dialect::FullOp>(std::vector<int64_t>{1, 3, 16, 16},
                                             1.5,
                                             phi::DataType::FLOAT32,
                                             phi::CPUPlace());
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

  paddle::dialect::FullOp full_filter_op =
      builder.Build<paddle::dialect::FullOp>(std::vector<int64_t>{64, 3, 3, 3},
                                             1.5,
                                             phi::DataType::FLOAT32,
                                             phi::CPUPlace());

  paddle::dialect::FullOp full_mean_op = builder.Build<paddle::dialect::FullOp>(
      std::vector<int64_t>{64}, 1.5, phi::DataType::FLOAT32, phi::CPUPlace());

  paddle::dialect::FullOp full_variance_op =
      builder.Build<paddle::dialect::FullOp>(std::vector<int64_t>{64},
                                             1.5,
                                             phi::DataType::FLOAT32,
                                             phi::CPUPlace());

  paddle::dialect::FullOp full_scale_op =
      builder.Build<paddle::dialect::FullOp>(std::vector<int64_t>{64},
                                             1.5,
                                             phi::DataType::FLOAT32,
                                             phi::CPUPlace());

  paddle::dialect::FullOp full_bias_op = builder.Build<paddle::dialect::FullOp>(
      std::vector<int64_t>{64}, 1.5, phi::DataType::FLOAT32, phi::CPUPlace());

  paddle::dialect::Conv2dOp conv2d_op =
      builder.Build<paddle::dialect::Conv2dOp>(full_input_op.out(),
                                               full_filter_op.out());

  paddle::dialect::BatchNormOp batch_norm_op =
      builder.Build<paddle::dialect::BatchNormOp>(conv2d_op.out(),
                                                  full_mean_op.out(),
                                                  full_variance_op.out(),
                                                  full_scale_op.out(),
                                                  full_bias_op.out(),
                                                  true,
                                                  0.9,
                                                  1e-6,
                                                  "NCHW",
                                                  false,
                                                  false);
410 411

  auto transpose1_op = builder.Build<paddle::dialect::TransposeOp>(
412
      batch_norm_op.out(), std::vector<int>{0, 2, 3, 1});
413

414 415
  auto transpose2_op = builder.Build<paddle::dialect::TransposeOp>(
      transpose1_op.out(), std::vector<int>{0, 3, 1, 2});
416

H
hong 已提交
417
  builder.Build<paddle::dialect::FetchOp>(transpose2_op.out(), "out", 0);
418 419 420
}

// TODO(wilber): Add a normal test.
421
TEST(pattern_rewrite, Patterns) {
422 423 424 425 426
  ir::IrContext *ctx = ir::IrContext::Instance();
  ctx->GetOrRegisterDialect<paddle::dialect::PaddleDialect>();
  ir::Program program(ctx);
  ir::Builder builder = ir::Builder(ctx, program.block());
  BuildProgram(builder);
427 428

  EXPECT_EQ(program.block()->size(), 11u);
429 430 431

  ir::PassManager pm(ctx);
  pm.AddPass(std::make_unique<TestPass>());
W
Wilber 已提交
432
  pm.AddPass(ir::CreateDcePass());
433 434
  program.Print(std::cout);
  std::cout << std::endl;
435 436
  pm.Run(&program);
  LOG(INFO) << "After Pass.";
437 438
  program.Print(std::cout);
  std::cout << std::endl;
439
}