dirac.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.initializer import Initializer
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.core import VarDesc
Z
zhiboniu 已提交
18
from ...fluid import framework
19
from ...fluid.framework import _current_expected_place
Z
zhiboniu 已提交
20 21
from paddle import in_dynamic_mode
from paddle.utils import unique_name
22
from paddle import _C_ops, _legacy_C_ops
J
Jiabin Yang 已提交
23
from ... import fluid
24

25 26 27 28
__all__ = []


class Dirac(Initializer):
29
    r"""Initialize the 3D/4D/5D Tensor with Dirac delta function.
30 31 32 33 34
    
    It can reserve the feature of convolution layer input, which means that
    as many channels are reserved as possible.

    In this initialize method, elements in the middle of convolution kernels will
35
    be set to 1 . The formula can be described as follow.
36

37
    .. math::
38

39
        X[d, d, shape[2]//2, shape[3]//2, ...]=1,  \   d=0,1...N
40 41
    
    where, ``N`` is the minimum value of ``in_channels`` and ``out_channels``
42 43

    Args:
44 45
        groups(int, optional): 0-dimension of the Tensor will be divided by groups, 
            each group has the same value. Default: 1.
46 47 48 49 50 51 52 53 54 55 56
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Dirac initializer instance objects.

    Examples:
        .. code-block:: python

            import paddle
            
57
            #1. For kernel_size is uneven number:
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
            
            attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Dirac())
            conv = paddle.nn.Conv1D(3, 2, 3, weight_attr=attr)
            conv.weight
            # Tensor(shape=[2, 3, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
            #       [[[0., 1., 0.],
            #         [0., 0., 0.],
            #         [0., 0., 0.]],
            # 
            #        [[0., 0., 0.],
            #         [0., 1., 0.],
            #         [0., 0., 0.]]])

            input = paddle.rand([8, 3, 10])
            output = conv(input)
            output == input[:, 0:2, 1:9]  
            # output.shape is [8, 2, 8], It means output is almost the same with input, 2 channels are reserved


            #2. For kernel_size is even number:
            attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Dirac())
            conv = paddle.nn.Conv1D(3, 2, 4, weight_attr=attr)
            conv.weight
            # Tensor(shape=[2, 3, 4], dtype=float32, place=CPUPlace, stop_gradient=False,
            #       [[[0., 0., 1., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.]],
            # 
            #        [[0., 0., 0., 0.],
            #         [0., 0., 1., 0.],
            #         [0., 0., 0., 0.]]])
    """

    def __init__(self, groups=1, name=None):
        assert groups > 0 and isinstance(
            groups, int), " 'groups' must be a positive integer. "
        super(Dirac, self).__init__()
        self._groups = groups

    def __call__(self, var, block=None):
        """Initialize the input tensor with dirac initializer.

        Args:
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.

        Returns:
            The most critical OP(scatter) in this initializer, which contains 7~8 ops in total.
        """
        block = self._check_block(block)
        assert isinstance(var, framework.Parameter)
        assert isinstance(block, framework.Block)
111 112 113
        check_variable_and_dtype(var, "Out",
                                 ['float16', 'bfloat16', 'float32', 'float64'],
                                 'Dirac')
114 115 116 117

        assert len(var.shape) in [
            3, 4, 5
        ], "Only Tensor with 3/4/5 dimensions can be initialized by Dirac"
118 119 120
        assert (
            var.shape[0] %
            self._groups) == 0, "Tensor 0-dimension must be divisible by groups"
121 122

        if var.dtype != VarDesc.VarType.FP32:
123 124 125 126 127 128
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['dirac', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=VarDesc.VarType.FP32,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
129 130
        else:
            out_var = var
J
Jiabin Yang 已提交
131 132 133
        op = None
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
134
                place = _current_expected_place()
135 136
                _C_ops.full_(out_var, out_var.shape, str(float(0)),
                             out_var.dtype, place)
137

J
Jiabin Yang 已提交
138
        else:
139 140 141 142 143 144 145 146 147
            block.append_op(type='fill_constant',
                            inputs={},
                            outputs={'Out': out_var},
                            attrs={
                                'value': float(0),
                                'dtype': out_var.dtype,
                                'shape': out_var.shape,
                            },
                            stop_gradient=True)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

        origin_shape = var.shape
        num_per_group = origin_shape[0] // self._groups
        min_shape = min(num_per_group, origin_shape[1])

        idx_list = []
        value_list = []
        strides = []
        prod = 1
        for dim in reversed(origin_shape):
            strides.insert(0, prod)
            prod *= dim
        for i in range(self._groups):
            for j in range(min_shape):
                value_list.append(1.0)
                offset = 0
                for (k, stride) in enumerate(strides):
                    if (k == 0):
                        offset += (j + i * num_per_group) * stride
                    elif (k == 1):
                        offset += j * stride
                    else:
                        offset += origin_shape[k] // 2 * stride
                idx_list.append(offset)
J
Jiabin Yang 已提交
172 173
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
174
                tmp_out = _C_ops.reshape(out_var, [-1])
J
Jiabin Yang 已提交
175 176
                tmp_out._share_underline_tensor_to(out_var)
        else:
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            x_shape = block.create_var(name=unique_name.generate(".".join(
                [out_var.name, "XShape"])),
                                       dtype=out_var.dtype,
                                       shape=out_var.shape,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False,
                                       stop_gradient=True)
            block.append_op(type="reshape2",
                            inputs={"X": out_var},
                            attrs={'shape': [-1]},
                            outputs={
                                "Out": out_var,
                                "XShape": x_shape
                            },
                            stop_gradient=True)
192 193 194 195 196 197

        index_tensor = block.create_var(
            name=unique_name.generate('scatter_index'),
            persistable=False,
            stop_gradient=True)

J
Jiabin Yang 已提交
198 199
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
W
wanghuancoder 已提交
200
                tmp_tensor = framework._varbase_creator()
201 202 203
                _C_ops.assign_value_(tmp_tensor, [len(idx_list)],
                                     VarDesc.VarType.INT64, idx_list,
                                     _current_expected_place())
J
Jiabin Yang 已提交
204 205
                tmp_tensor._share_underline_tensor_to(index_tensor)
        else:
206 207 208 209 210 211 212 213
            block.append_op(type='assign_value',
                            outputs={'Out': index_tensor},
                            attrs={
                                'dtype': VarDesc.VarType.INT64,
                                'shape': [len(idx_list)],
                                'int64_values': idx_list
                            },
                            stop_gradient=True)
214 215 216 217 218 219

        value_tensor = block.create_var(
            name=unique_name.generate('scatter_value'),
            persistable=False,
            stop_gradient=True)

J
Jiabin Yang 已提交
220 221
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
W
wanghuancoder 已提交
222
                tmp_tensor = framework._varbase_creator()
223 224 225 226
                _C_ops.assign_value_(tmp_tensor, [len(value_list)],
                                     VarDesc.VarType.FP32, value_list,
                                     _current_expected_place())

J
Jiabin Yang 已提交
227 228
                tmp_tensor._share_underline_tensor_to(value_tensor)
        else:
229 230 231 232 233 234 235 236
            block.append_op(type='assign_value',
                            outputs={'Out': value_tensor},
                            attrs={
                                'dtype': VarDesc.VarType.FP32,
                                'shape': [len(value_list)],
                                'fp32_values': value_list
                            },
                            stop_gradient=True)
237

J
Jiabin Yang 已提交
238 239
        if framework.in_dygraph_mode():
            with fluid.dygraph.no_grad():
240 241
                tmp_out = _C_ops.scatter(out_var, index_tensor, value_tensor,
                                         True)
J
Jiabin Yang 已提交
242
                tmp_out._share_underline_tensor_to(out_var)
243
                tmp_reshape_out = _C_ops.reshape(out_var, origin_shape)
J
Jiabin Yang 已提交
244 245
                tmp_reshape_out._share_underline_tensor_to(out_var)
                if var.dtype != VarDesc.VarType.FP32:
246
                    tmp_cast_out = _C_ops.cast(out_var, var.dtype)
J
Jiabin Yang 已提交
247 248
                    tmp_cast_out._share_underline_tensor_to(var)
        else:
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
            op = block.append_op(type="scatter",
                                 inputs={
                                     "X": out_var,
                                     "Ids": index_tensor,
                                     "Updates": value_tensor
                                 },
                                 attrs={'overwrite': True},
                                 outputs={"Out": out_var},
                                 stop_gradient=True)
            x_shape = block.create_var(name=unique_name.generate(".".join(
                [out_var.name, "XShape"])),
                                       dtype=out_var.dtype,
                                       shape=out_var.shape,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False,
                                       stop_gradient=True)
            block.append_op(type="reshape2",
                            inputs={"X": out_var},
                            attrs={'shape': origin_shape},
                            outputs={
                                "Out": out_var,
                                "XShape": x_shape
                            },
                            stop_gradient=True)
J
Jiabin Yang 已提交
273
            if var.dtype != VarDesc.VarType.FP32:
274 275 276 277 278 279 280 281
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                },
                                stop_gradient=True)
Z
zhiboniu 已提交
282
        if not in_dynamic_mode():
283 284
            var.op = op
        return op