lookahead.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.optimizer import Optimizer
from paddle.fluid import core, framework, layers, unique_name
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
from paddle.fluid.layer_helper import LayerHelper
import paddle
import numpy as np
from paddle.fluid.dygraph import base as imperative_base

23
__all__ = []
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101


class LookAhead(Optimizer):
    r"""
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	    
        fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float, optinal): The learning rate of Lookahead. The default value is 0.5.
        k (int, optinal): The slow params is updated every k steps. The default value is 5.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Examples:

        .. code-block:: python
        
            import numpy as np
            import paddle
            import paddle.nn as nn

            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1,
                                            (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
                    self.bias = self._linear.bias

                @paddle.jit.to_static
                def forward(self, x):
                    return self._linear(x)

            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Train Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            optimizer = paddle.optimizer.SGD(learning_rate=0.1, parameters=layer.parameters())
102
            lookahead = paddle.incubate.LookAhead(optimizer, alpha=0.2, k=5)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(
                dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            
            train(layer, loader, loss_fn, lookahead)

    """
    _slow_str = "slow"

    def __init__(self, inner_optimizer, alpha=0.5, k=5, name=None):
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        if self.inner_optimizer._parameter_list is None:
            parameters = framework.default_main_program().global_block(
            ).all_parameters()
        else:
            parameters = self.inner_optimizer._parameter_list

132 133 134 135 136
        super(LookAhead, self).__init__(learning_rate=alpha,
                                        parameters=parameters,
                                        weight_decay=None,
                                        grad_clip=None,
                                        name=name)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

        self.alpha = alpha
        self.k = k
        self.type = "lookahead"
        self.helper = LayerHelper(self.__class__.__name__)
        self._global_step_var = None
        self._k_var = None

    @framework.dygraph_only
    @imperative_base.no_grad
    def step(self):
        """
        Execute the optimizer and update parameters once.
        
        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import numpy as np
                inp = paddle.to_tensor(np.random.random([1, 10]).astype('float32'))
                linear = paddle.nn.Linear(10, 1)
                out = linear(inp)
                loss = paddle.mean(out)
                sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
165
                lookahead = paddle.incubate.LookAhead(sgd, alpha=0.2, k=5)
166 167 168 169 170 171 172
                loss.backward()
                lookahead.step()
                lookahead.clear_grad()

        """
        self.inner_optimizer.step()

173
        self._increment_global_var()
174 175 176 177 178 179 180 181
        params_grads = []
        for param in self._parameter_list:
            if not param.trainable:
                continue
            if param._grad_ivar() is not None:
                grad_var = param._grad_ivar()
                params_grads.append((param, grad_var))

182 183 184
        self._apply_optimize(loss=None,
                             startup_program=None,
                             params_grads=params_grads)
185 186 187 188 189 190 191

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._slow_str, p)

192
    def _increment_global_var(self):
193 194 195 196 197 198 199 200
        if self._global_step_var is None:
            self._global_step_var = layers.create_global_var(
                name=unique_name.generate("lookahead_step"),
                shape=[1],
                value=0,
                dtype='int32',
                persistable=True)

201 202 203 204
        self.helper.append_op(type='increment',
                              inputs={'X': [self._global_step_var]},
                              outputs={'Out': [self._global_step_var]},
                              attrs={'step': 1.0})
205

206
    def _append_optimize_op(self, block, param_and_grad):
207
        one_var = paddle.ones(shape=[1], dtype='int32', name='lookahead_ones')
208 209 210
        zero_var = paddle.zeros(shape=[1],
                                dtype='int32',
                                name='lookahead_zeros')
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        k_var = layers.create_global_var(
            name=unique_name.generate("lookahead_k"),
            shape=[1],
            value=self.k,
            dtype='int32',
            persistable=True)

        mod = paddle.remainder(self._global_step_var, k_var)

        cond_1 = paddle.equal(self._global_step_var, one_var)
        cond_1 = paddle.cast(cond_1, dtype='float32')

        cond_2 = paddle.equal(mod, zero_var)
        cond_2 = paddle.cast(cond_2, dtype='float32')

        slow_var = self._get_accumulator(self._slow_str, param_and_grad[0])

        tmp_var = cond_1 * param_and_grad[0] + (1 - cond_1) * slow_var
        paddle.assign(tmp_var, slow_var)

        tmp_var = self.alpha * param_and_grad[0] + (1.0 - self.alpha) * slow_var
        tmp_var_1 = cond_2 * tmp_var + (1 - cond_2) * param_and_grad[0]
        paddle.assign(tmp_var_1, param_and_grad[0])

        tmp_var_1 = cond_2 * tmp_var + (1 - cond_2) * slow_var
        paddle.assign(tmp_var_1, slow_var)

    @imperative_base.no_grad
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameters=None,
                 no_grad_set=None):
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:

            .. code-block:: python

                import paddle
                import numpy as np
                inp = paddle.to_tensor(np.random.random([1, 10]).astype('float32'))
                linear = paddle.nn.Linear(10, 1)
                out = linear(inp)
                loss = paddle.mean(out)
                sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
277
                lookahead = paddle.incubate.LookAhead(sgd, alpha=0.2, k=5)
278 279 280 281 282 283 284 285 286 287 288 289 290 291
                loss.backward()
                lookahead.minimize(loss)
                lookahead.clear_grad()

        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

        # Apply inner optimizer to the main_program
        optimize_ops, params_grads = self.inner_optimizer.minimize(
            loss,
            startup_program=startup_program,
            parameters=parameters,
            no_grad_set=no_grad_set)

292 293
        self._increment_global_var()

294 295 296
        _ = self._apply_optimize(loss,
                                 startup_program=startup_program,
                                 params_grads=params_grads)
297 298

        return optimize_ops, params_grads