test_recurrent_op.py 14.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import unittest
C
chengduo 已提交
18
import paddle.fluid as fluid
19
import paddle.fluid.layers as layers
20 21 22 23
import numpy as np
import paddle.fluid.core as core

from paddle.fluid import ParamAttr
24 25 26
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
S
fix res  
superjom 已提交
27 28


Y
Yu Yang 已提交
29 30 31 32
class PyRNNBase(object):
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
33

34 35
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
36 37 38

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
39 40
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
41 42 43 44

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
72 73
        self.W = np.ones(shape=(input_dim, input_dim)).astype("float32")
        self.U = np.zeros(shape=(input_dim, input_dim)).astype("float32")
Y
Yu Yang 已提交
74 75 76 77
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
78 79 80

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
81
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
82 83
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
84 85
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
86

Y
Yu Yang 已提交
87 88
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
89

Y
Yu Yang 已提交
90 91
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
92 93


Y
Yu Yang 已提交
94 95 96
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
97 98 99
    return tensor


Y
Yu Yang 已提交
100
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
101 102 103
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
104
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
105 106 107 108 109
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
110
        - h
Y
Yan Chunwei 已提交
111 112
    '''

Y
Yu Yang 已提交
113 114 115 116
    input_dim = 2
    batch_size = 1
    sent_len = 1

117 118 119
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
120
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
121

S
superjom 已提交
122
    def setUp(self):
123
        self.setup_program()
Y
Yu Yang 已提交
124
        self.data_field = {"x", "h_boot"}
Y
Yan Chunwei 已提交
125

Y
Yu Yang 已提交
126 127 128 129
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

C
chengduo 已提交
130 131
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yan Chunwei 已提交
132 133

    def create_rnn_op(self):
134
        x = layers.data(
Y
Yu Yang 已提交
135
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
136
            dtype='float32',
Y
Yu Yang 已提交
137
            name='x',
C
chengduo 已提交
138
            append_batch_size=False)
Y
Yu Yang 已提交
139
        x.stop_gradient = False
140
        h_boot = layers.data(
C
chengduo 已提交
141
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
142
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
143

C
chengduo 已提交
144
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
145 146 147 148
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

149 150
            h = layers.scale(
                x=layers.elementwise_add(
C
chengduo 已提交
151 152
                    x=h_pre, y=x_t),
                scale=self.py_rnn.scale)
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161 162 163 164

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        exe = Executor(self.place)
165
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
166 167 168
                      feed=self.feed_map,
                      fetch_list=[self.output])

D
dzhwinter 已提交
169
        return out[0]
Y
Yu Yang 已提交
170 171 172 173 174 175 176

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        fetch_list = [
Q
qiaolongfei 已提交
177
            self.main_program.global_block().var(grad_var_name(x))
Y
Yu Yang 已提交
178 179 180 181
            for x in self.data_field
        ]

        exe = Executor(self.place)
182 183
        return exe.run(self.main_program,
                       feed=self.feed_map,
D
dzhwinter 已提交
184 185
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yu Yang 已提交
186

187
    def test_backward(self, rtol=0.01):
Y
Yu Yang 已提交
188 189
        self.check_forward()

C
chengduo 已提交
190 191
        with fluid.program_guard(self.main_program, self.startup_program):
            append_backward(self.output)
Y
Yu Yang 已提交
192 193 194 195 196 197 198 199

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
        for idx, name in enumerate(self.data_field):
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
                np.isclose(
C
chengduo 已提交
200 201 202 203
                    num_grad[idx], ana_grad[idx], rtol=rtol).all(),
                "num_grad (" + name + ") has diff at " + str(self.place) +
                "\nExpect " + str(num_grad[idx]) + "\n" + "But Got" +
                str(ana_grad[idx]) + " in class " + self.__class__.__name__)
Y
Yu Yang 已提交
204 205

    def check_forward(self):
S
superjom 已提交
206 207 208
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        self.assertEqual(pd_output.shape, py_output.shape)
209
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.01).all())
Y
Yan Chunwei 已提交
210

Y
Yu Yang 已提交
211 212 213 214 215 216 217 218 219
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
        feed_list = [getattr(self.py_rnn, x) for x in self.data_field]
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
220

Y
Yu Yang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
    '''
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
252
        self.setup_program()
Y
Yu Yang 已提交
253 254 255 256 257 258 259

        self.data_field = {"x", "h_boot", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

C
chengduo 已提交
260 261
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
262 263

    def create_rnn_op(self):
264
        x = layers.data(
Y
Yu Yang 已提交
265
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
266
            dtype='float32',
Y
Yu Yang 已提交
267
            name='x',
C
chengduo 已提交
268
            append_batch_size=False)
Y
Yu Yang 已提交
269
        x.stop_gradient = False
270
        h_boot = layers.data(
C
chengduo 已提交
271
            shape=[self.input_dim], dtype='float32', name='h_boot')
Y
Yu Yang 已提交
272
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
273

C
chengduo 已提交
274
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
275 276 277 278
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

279 280 281 282 283 284 285 286 287 288 289 290 291 292
            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='W',
                    initializer=fluid.initializer.ConstantInitializer(1.0)),
                bias_attr=False)
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='U',
                    initializer=fluid.initializer.ConstantInitializer(0.0)),
                bias_attr=False)
293

C
chengduo 已提交
294
            h = layers.sigmoid(x=layers.elementwise_add(x=temp_l, y=temp_r))
Y
Yu Yang 已提交
295 296 297 298 299 300

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

C
chengduo 已提交
301
    def test_backward(self):
302
        super(RecurrentOpTest2, self).test_backward(rtol=0.01)
C
chengduo 已提交
303

Y
Yu Yang 已提交
304

305
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
322 323
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3, self).__init__(
                input_shape, output_shape)
Y
Yu Yang 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
351
        self.setup_program()
Y
Yu Yang 已提交
352 353 354 355 356

        self.data_field = {"x", "h_boot1", "h_boot2"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
357 358
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
359

C
chengduo 已提交
360 361
        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
Y
Yu Yang 已提交
362 363

    def create_rnn_op(self):
364
        x = layers.data(
Y
Yu Yang 已提交
365
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
366
            dtype='float32',
Y
Yu Yang 已提交
367
            name='x',
C
chengduo 已提交
368
            append_batch_size=False)
Y
Yu Yang 已提交
369
        x.stop_gradient = False
370
        h_boot1 = layers.data(
Y
Yu Yang 已提交
371
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
372
            dtype='float32',
Y
Yu Yang 已提交
373
            name='h_boot1',
C
chengduo 已提交
374
            append_batch_size=False)
Y
Yu Yang 已提交
375
        h_boot1.stop_gradient = False
376
        h_boot2 = layers.data(
Y
Yu Yang 已提交
377
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
378
            dtype='float32',
Y
Yu Yang 已提交
379
            name='h_boot2',
C
chengduo 已提交
380
            append_batch_size=False)
Y
Yu Yang 已提交
381
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
382

C
chengduo 已提交
383
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
384 385 386 387 388
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

C
chengduo 已提交
389 390 391
            mem1 = layers.scale(x=h_pre1, scale=1.0)
            mem2 = layers.scale(x=h_pre2, scale=1.0)
            out = layers.sums(input=[mem1, x_t, mem2])
Y
Yu Yang 已提交
392 393 394 395 396 397

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
398 399


400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpNoMemBootTest.PySimpleRNN4, self).__init__(
                input_shape, output_shape)
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

        self.data_field = {"x"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
                                                            self.output_shape)
C
chengduo 已提交
442 443 444

        with fluid.program_guard(self.main_program, self.startup_program):
            self.output = layers.mean(self.create_rnn_op())
445 446 447 448

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
449
            dtype='float32',
450
            name='x',
C
chengduo 已提交
451
            append_batch_size=False)
452 453
        x.stop_gradient = False

C
chengduo 已提交
454
        rnn = layers.StaticRNN()
455 456 457
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
C
chengduo 已提交
458
            mem = layers.elementwise_add(x=mem_pre, y=x_t)
459 460 461 462 463 464
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


Y
Yan Chunwei 已提交
465 466
if __name__ == '__main__':
    unittest.main()