value.h 4.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <glog/logging.h>
#include <llvm/ADT/SmallVector.h>

#include <string>
#include <utility>
#include <vector>

#include "paddle/infrt/common/object.h"
#include "paddle/infrt/common/shared.h"
#include "paddle/infrt/host_context/function.h"
#include "paddle/infrt/support/variant.h"
#include "paddle/infrt/tensor/dense_host_tensor.h"
#include "paddle/infrt/tensor/dense_tensor_view.h"
#include "paddle/infrt/tensor/tensor_map.h"
#include "paddle/infrt/tensor/tensor_shape.h"
31 32 33 34
#ifdef INFRT_WITH_PTEN
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/dense_tensor.h"
#endif  // INFRT_WITH_PTEN
Y
Yan Chunwei 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

namespace infrt {
namespace host_context {

struct MlirFunctionExecutable;

using ValueVariantType = Variant<int16_t,
                                 int32_t,
                                 int64_t,
                                 float,
                                 double,
                                 bool,
                                 std::string,
                                 tensor::TensorShape,
                                 tensor::DenseHostTensor,
                                 MlirFunctionExecutable*,
                                 tensor::TensorMap,
52 53 54 55
#ifdef INFRT_WITH_PTEN
                                 pten::CPUContext,
                                 pten::DenseTensor,
#endif
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                                 std::vector<int16_t>,
                                 std::vector<int32_t>,
                                 std::vector<int64_t>,
                                 std::vector<float>,
                                 std::vector<double>>;

//! Copy content from \param from to \param to.
void CopyTo(const Value& from, Value* to);

/**
 * Represents any data type for value in host context.
 */
class Value : public common::Object {
 public:
  using variant_type = ValueVariantType;

  explicit Value() {}  // NOLINT
  explicit Value(int32_t x) : data(x) {}
  explicit Value(int64_t x) : data(x) {}
  explicit Value(float x) : data(x) {}
  explicit Value(double x) : data(x) {}
  explicit Value(bool x) : data(x) {}
  explicit Value(std::string x) : data(x) {}
  explicit Value(tensor::TensorMap&& x) : data(x) {}
  explicit Value(std::vector<int16_t>&& x) : data(x) {}
  explicit Value(std::vector<int32_t>&& x) : data(x) {}
  explicit Value(std::vector<int64_t>&& x) : data(x) {}
  explicit Value(std::vector<float>&& x) : data(x) {}
  explicit Value(std::vector<double>&& x) : data(x) {}
  explicit Value(tensor::TensorShape&& x) : data(std::move(x)) {}
  explicit Value(tensor::DenseHostTensor&& x) : data(std::move(x)) {}
  explicit Value(MlirFunctionExecutable* x) : data(x) {}

  template <typename T>
  const T& get() const {
    return data.get<T>();
  }
  template <typename T>
  T& get() {
    return data.get<T>();
  }

  template <typename T>
  void set(T&& v) {
    data = std::move(v);
  }

  void set(Value* v) { data = std::move(v->data); }

  bool valid() const { return true; }

  const char* type_info() const override;

  friend void CopyTo(const Value& from, Value* to);

 private:
  ValueVariantType data;
  static constexpr const char* __type_info__ = "host_context_value";
};

/**
 * Represents a counted reference of a Value.
 */
class ValueRef : common::Shared<Value> {
 public:
  ValueRef() = default;
  explicit ValueRef(Value* n) : common::Shared<Value>(n) {}
  explicit ValueRef(int32_t val);
  explicit ValueRef(int64_t val);
  explicit ValueRef(float val);
  explicit ValueRef(double val);
  explicit ValueRef(bool val);

  using common::Shared<Value>::get;
  using common::Shared<Value>::Reset;
  using common::Shared<Value>::operator->;
  using common::Shared<Value>::operator*;
  //! Get a readonly data.
  template <typename T>
  const T& get() const {
    CHECK(p_);
    return p_->get<T>();
  }

  template <typename T>
  T& get() {
    CHECK(p_);
    return p_->get<T>();
  }

  //! Assign a data.
  template <typename T>
  void Assign(const T& x) {
    if (!p_) {
      p_ = common::make_shared<Value>();
    }
    *p_ = x;
  }

  template <typename T, typename... Args>
  void Assign(Args... args) {
    p_ = common::make_shared<T>(std::forward<Args>(args)...);
  }

  inline bool IsValid() { return p_; }
};

}  // namespace host_context
}  // namespace infrt