split_selected_rows_op.h 3.1 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Y
Yancey 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31 32 33 34
static int FindOutIdx(int row, const std::vector<int>& height_sections) {
  int offset = 0;
  for (size_t i = 0; i < height_sections.size(); ++i) {
    if (row >= offset && row < (offset + height_sections[i])) {
      return i;
    }
    offset += height_sections[i];
  }
  return -1;
}

Y
Yancey 已提交
35 36 37 38 39 40 41 42
template <typename DeviceContext, typename T>
class SplitSelectedRowsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::SelectedRows>("X");
    auto outs = ctx.MultiOutput<framework::SelectedRows>("Out");
    auto height_sections = ctx.Attr<std::vector<int>>("height_sections");

43 44 45
    auto x_rows = x->rows();
    std::vector<std::vector<int>> outs_rows_idx;
    outs_rows_idx.resize(outs.size());
Y
Yancey 已提交
46

47 48 49 50 51 52 53 54
    auto row_numel = x->value().numel() / x->value().dims()[0];
    auto src = x->value().data<T>();

    for (size_t i = 0; i < x_rows.size(); ++i) {
      int out_idx = FindOutIdx(x_rows[i], height_sections);
      outs_rows_idx[out_idx].push_back(i);
    }
    auto place = ctx.GetPlace();
Y
Yancey 已提交
55

56 57
    for (size_t i = 0; i < outs_rows_idx.size(); ++i) {
      auto rows_idx = outs_rows_idx[i];
58
      outs[i]->set_height(height_sections[i]);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
      if (rows_idx.size() > 0) {
        auto dims = x->GetCompleteDims();
        dims[0] = rows_idx.size();
        outs[i]->mutable_value()->mutable_data<T>(dims, x->place());
        for (auto idx : rows_idx) {
          outs[i]->mutable_rows()->push_back(x_rows[idx]);
        }
        auto dst = outs[i]->mutable_value()->mutable_data<T>(ctx.GetPlace());
        for (size_t j = 0; j < rows_idx.size(); j++) {
          if (platform::is_cpu_place(place)) {
            memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                         platform::CPUPlace(), src + rows_idx[j] * row_numel,
                         sizeof(T) * row_numel);
          } else {
#ifdef PADDLE_WITH_CUDA
            auto stream = ctx.cuda_device_context().stream();
            memory::Copy(platform::CUDAPlace(), dst + j * row_numel,
                         platform::CUDAPlace(), src + rows_idx[j] * row_numel,
                         sizeof(T) * row_numel, stream);
#else
            PADDLE_THROW("Paddle is not compiled with GPU");
#endif
          }
        }
Y
Yancey 已提交
83 84 85 86 87 88 89
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle