ssd_sparse_table.cc 30.3 KB
Newer Older
Z
zhaocaibei123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/ps/table/ssd_sparse_table.h"
16

Z
zhaocaibei123 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
#include "paddle/fluid/distributed/common/cost_timer.h"
#include "paddle/fluid/distributed/common/local_random.h"
#include "paddle/fluid/distributed/common/topk_calculator.h"
#include "paddle/fluid/framework/archive.h"
#include "paddle/utils/string/string_helper.h"

DECLARE_bool(pserver_print_missed_key_num_every_push);
DECLARE_bool(pserver_create_value_when_push);
DECLARE_bool(pserver_enable_create_feasign_randomly);
DEFINE_bool(pserver_open_strict_check, false, "pserver_open_strict_check");
DEFINE_string(rocksdb_path, "database", "path of sparse table rocksdb file");
DEFINE_int32(pserver_load_batch_size, 5000, "load batch size for ssd");

namespace paddle {
namespace distributed {

int32_t SSDSparseTable::Initialize() {
  MemorySparseTable::Initialize();
  _db = paddle::distributed::RocksDBHandler::GetInstance();
  _db->initialize(FLAGS_rocksdb_path, _real_local_shard_num);
  return 0;
}

int32_t SSDSparseTable::InitializeShard() { return 0; }

int32_t SSDSparseTable::PullSparse(float* pull_values, const uint64_t* keys,
                                   size_t num) {
  CostTimer timer("pserver_downpour_sparse_select_all");
  size_t value_size = _value_accesor->GetAccessorInfo().size / sizeof(float);
  size_t mf_value_size =
      _value_accesor->GetAccessorInfo().mf_size / sizeof(float);
  size_t select_value_size =
      _value_accesor->GetAccessorInfo().select_size / sizeof(float);

  {  // 从table取值 or create
    std::vector<std::future<int>> tasks(_real_local_shard_num);
    std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
        _real_local_shard_num);
    for (size_t i = 0; i < num; ++i) {
      int shard_id = (keys[i] % _sparse_table_shard_num) % _avg_local_shard_num;
      task_keys[shard_id].push_back({keys[i], i});
    }

    std::atomic<uint32_t> missed_keys{0};
    for (size_t shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
      tasks[shard_id] =
          _shards_task_pool[shard_id % _shards_task_pool.size()]->enqueue(
              [this, shard_id, &task_keys, value_size, mf_value_size,
               select_value_size, pull_values, keys, &missed_keys]() -> int {
                auto& keys = task_keys[shard_id];
                auto& local_shard = _local_shards[shard_id];
                float data_buffer[value_size];
                float* data_buffer_ptr = data_buffer;
                for (int i = 0; i < keys.size(); ++i) {
                  uint64_t key = keys[i].first;
                  auto itr = local_shard.find(key);
                  size_t data_size = value_size - mf_value_size;
                  if (itr == local_shard.end()) {
                    // pull rocksdb
                    std::string tmp_string("");
                    if (_db->get(shard_id, (char*)&key, sizeof(uint64_t),
                                 tmp_string) > 0) {
                      ++missed_keys;
                      if (FLAGS_pserver_create_value_when_push) {
                        memset(data_buffer, 0, sizeof(float) * data_size);
                      } else {
                        auto& feature_value = local_shard[key];
                        feature_value.resize(data_size);
                        float* data_ptr =
                            const_cast<float*>(feature_value.data());
                        _value_accesor->Create(&data_buffer_ptr, 1);
                        memcpy(data_ptr, data_buffer_ptr,
                               data_size * sizeof(float));
                      }
                    } else {
                      data_size = tmp_string.size() / sizeof(float);
                      memcpy(data_buffer_ptr,
                             paddle::string::str_to_float(tmp_string),
                             data_size * sizeof(float));
                      // from rocksdb to mem
                      auto& feature_value = local_shard[key];
                      feature_value.resize(data_size);
                      memcpy(const_cast<float*>(feature_value.data()),
                             data_buffer_ptr, data_size * sizeof(float));
                      _db->del_data(shard_id, (char*)&key, sizeof(uint64_t));
                    }
                  } else {
                    data_size = itr.value().size();
                    memcpy(data_buffer_ptr, itr.value().data(),
                           data_size * sizeof(float));
                  }
                  for (int mf_idx = data_size; mf_idx < value_size; ++mf_idx) {
                    data_buffer[mf_idx] = 0.0;
                  }
                  int pull_data_idx = keys[i].second;
                  float* select_data =
                      pull_values + pull_data_idx * select_value_size;
                  _value_accesor->Select(&select_data,
                                         (const float**)&data_buffer_ptr, 1);
                }
                return 0;
              });
    }
    for (size_t i = 0; i < _real_local_shard_num; ++i) {
      tasks[i].wait();
    }
    if (FLAGS_pserver_print_missed_key_num_every_push) {
      LOG(WARNING) << "total pull keys:" << num
                   << " missed_keys:" << missed_keys.load();
    }
  }
  return 0;
}

int32_t SSDSparseTable::PushSparse(const uint64_t* keys, const float* values,
                                   size_t num) {
  CostTimer timer("pserver_downpour_sparse_update_all");
  // 构造value push_value的数据指针
  size_t value_col = _value_accesor->GetAccessorInfo().size / sizeof(float);
  size_t mf_value_col =
      _value_accesor->GetAccessorInfo().mf_size / sizeof(float);
  size_t update_value_col =
      _value_accesor->GetAccessorInfo().update_size / sizeof(float);
  {
    std::vector<std::future<int>> tasks(_real_local_shard_num);
    std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
        _real_local_shard_num);
    for (size_t i = 0; i < num; ++i) {
      int shard_id = (keys[i] % _sparse_table_shard_num) % _avg_local_shard_num;
      task_keys[shard_id].push_back({keys[i], i});
    }
    for (size_t shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
      tasks[shard_id] =
          _shards_task_pool[shard_id % _shards_task_pool.size()]->enqueue(
              [this, shard_id, value_col, mf_value_col, update_value_col,
               values, &task_keys]() -> int {
                auto& keys = task_keys[shard_id];
                auto& local_shard = _local_shards[shard_id];
                float data_buffer[value_col];
                float* data_buffer_ptr = data_buffer;
                for (int i = 0; i < keys.size(); ++i) {
                  uint64_t key = keys[i].first;
                  uint64_t push_data_idx = keys[i].second;
                  const float* update_data =
                      values + push_data_idx * update_value_col;
                  auto itr = local_shard.find(key);
                  if (itr == local_shard.end()) {
                    if (FLAGS_pserver_enable_create_feasign_randomly &&
                        !_value_accesor->CreateValue(1, update_data)) {
                      continue;
                    }
                    auto value_size = value_col - mf_value_col;
                    auto& feature_value = local_shard[key];
                    feature_value.resize(value_size);
                    _value_accesor->Create(&data_buffer_ptr, 1);
                    memcpy(const_cast<float*>(feature_value.data()),
                           data_buffer_ptr, value_size * sizeof(float));
                    itr = local_shard.find(key);
                  }
                  auto& feature_value = itr.value();
                  float* value_data = const_cast<float*>(feature_value.data());
                  size_t value_size = feature_value.size();

                  if (value_size ==
                      value_col) {  // 已拓展到最大size, 则就地update
                    _value_accesor->Update(&value_data, &update_data, 1);
                  } else {  // 拷入buffer区进行update,然后再回填,不需要的mf则回填时抛弃了
                    memcpy(data_buffer_ptr, value_data,
                           value_size * sizeof(float));
                    _value_accesor->Update(&data_buffer_ptr, &update_data, 1);
                    if (_value_accesor->NeedExtendMF(data_buffer)) {
                      feature_value.resize(value_col);
                      value_data = const_cast<float*>(feature_value.data());
                      _value_accesor->Create(&value_data, 1);
                    }
                    memcpy(value_data, data_buffer_ptr,
                           value_size * sizeof(float));
                  }
                }
                return 0;
              });
    }
    for (size_t i = 0; i < _real_local_shard_num; ++i) {
      tasks[i].wait();
    }
  }
  /*
  //update && value 的转置
  thread_local Eigen::MatrixXf update_matrix;
  float* transposed_update_data[update_value_col];
  make_matrix_with_eigen(num, update_value_col, update_matrix,
  transposed_update_data);
  copy_array_to_eigen(values, update_matrix);

  thread_local Eigen::MatrixXf value_matrix;
  float* transposed_value_data[value_col];
  make_matrix_with_eigen(num, value_col, value_matrix, transposed_value_data);
  copy_matrix_to_eigen((const float**)(value_ptrs->data()), value_matrix);

  //批量update
  {
      CostTimer accessor_timer("pslib_downpour_sparse_update_accessor");
      _value_accesor->update(transposed_value_data, (const
  float**)transposed_update_data, num);
  }
  copy_eigen_to_matrix(value_matrix, value_ptrs->data());
  */
  return 0;
}

int32_t SSDSparseTable::Shrink(const std::string& param) {
  int thread_num = _real_local_shard_num < 20 ? _real_local_shard_num : 20;
  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    uint64_t mem_count = 0;
    uint64_t ssd_count = 0;

    LOG(INFO) << "SSDSparseTable begin shrink shard:" << i;
    auto& shard = _local_shards[i];
    for (auto it = shard.begin(); it != shard.end();) {
      if (_value_accesor->Shrink(it.value().data())) {
        it = shard.erase(it);
        mem_count++;
      } else {
        ++it;
      }
    }
    auto* it = _db->get_iterator(i);
    for (it->SeekToFirst(); it->Valid(); it->Next()) {
      if (_value_accesor->Shrink(
              paddle::string::str_to_float(it->value().data()))) {
        _db->del_data(i, it->key().data(), it->key().size());
        ssd_count++;
      } else {
        _db->put(i, it->key().data(), it->key().size(), it->value().data(),
                 it->value().size());
      }
    }
    delete it;
    LOG(INFO) << "SSDSparseTable shrink success. shard:" << i << " delete MEM["
              << mem_count << "] SSD[" << ssd_count << "]";
    //_db->flush(i);
  }
  return 0;
}

int32_t SSDSparseTable::UpdateTable() {
  // TODO implement with multi-thread
  int count = 0;
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    auto& shard = _local_shards[i];
    // from mem to ssd
    for (auto it = shard.begin(); it != shard.end();) {
      if (_value_accesor->SaveSSD(it.value().data())) {
        _db->put(i, (char*)&it.key(), sizeof(uint64_t),
                 (char*)it.value().data(), it.value().size() * sizeof(float));
        count++;
        it = shard.erase(it);
      } else {
        ++it;
      }
    }
    _db->flush(i);
  }
  LOG(INFO) << "Table>> update count: " << count;
  return 0;
}

int64_t SSDSparseTable::LocalSize() {
  int64_t local_size = 0;
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    local_size += _local_shards[i].size();
  }
  // TODO rocksdb size
  uint64_t ssd_size = 0;
  // _db->get_estimate_key_num(ssd_size);
  // return local_size + ssd_size;
  return local_size;
}

int32_t SSDSparseTable::Save(const std::string& path,
                             const std::string& param) {
  if (_real_local_shard_num == 0) {
    _local_show_threshold = -1;
    return 0;
  }
  int save_param = atoi(param.c_str());  // batch_model:0  xbox:1
  //    if (save_param == 5) {
  //        return save_patch(path, save_param);
  //    }

  // LOG(INFO) << "table cache rate is: " << _config.sparse_table_cache_rate();
  LOG(INFO) << "table cache rate is: " << _config.sparse_table_cache_rate();
  LOG(INFO) << "enable_sparse_table_cache: "
            << _config.enable_sparse_table_cache();
  LOG(INFO) << "LocalSize: " << LocalSize();
  if (_config.enable_sparse_table_cache()) {
    LOG(INFO) << "Enable sparse table cache, top n:" << _cache_tk_size;
  }
  _cache_tk_size = LocalSize() * _config.sparse_table_cache_rate();
  TopkCalculator tk(_real_local_shard_num, _cache_tk_size);
  size_t file_start_idx = _avg_local_shard_num * _shard_idx;
  std::string table_path = TableDir(path);
  _afs_client.remove(paddle::string::format_string(
      "%s/part-%03d-*", table_path.c_str(), _shard_idx));
  int thread_num = _real_local_shard_num < 20 ? _real_local_shard_num : 20;

  // std::atomic<uint32_t> feasign_size;
  std::atomic<uint32_t> feasign_size_all{0};
  // feasign_size = 0;

  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    FsChannelConfig channel_config;
    if (_config.compress_in_save() && (save_param == 0 || save_param == 3)) {
      channel_config.path = paddle::string::format_string(
          "%s/part-%03d-%05d.gz", table_path.c_str(), _shard_idx,
          file_start_idx + i);
    } else {
      channel_config.path =
          paddle::string::format_string("%s/part-%03d-%05d", table_path.c_str(),
                                        _shard_idx, file_start_idx + i);
    }
    channel_config.converter = _value_accesor->Converter(save_param).converter;
    channel_config.deconverter =
        _value_accesor->Converter(save_param).deconverter;
    int err_no = 0;
    int retry_num = 0;
    bool is_write_failed = false;
    int feasign_size = 0;
    auto& shard = _local_shards[i];
    do {
      err_no = 0;
      feasign_size = 0;
      is_write_failed = false;
      auto write_channel =
          _afs_client.open_w(channel_config, 1024 * 1024 * 40, &err_no);
      for (auto it = shard.begin(); it != shard.end(); ++it) {
        if (_config.enable_sparse_table_cache() &&
            (save_param == 1 || save_param == 2) &&
            _value_accesor->Save(it.value().data(), 4)) {
          // tk.push(i, it.value().data()[2]);
          tk.push(i, _value_accesor->GetField(it.value().data(), "show"));
        }
        if (_value_accesor->Save(it.value().data(), save_param)) {
          std::string format_value = _value_accesor->ParseToString(
              it.value().data(), it.value().size());
366 367
          if (0 != write_channel->write_line(paddle::string::format_string(
                       "%lu %s", it.key(), format_value.c_str()))) {
Z
zhaocaibei123 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
            ++retry_num;
            is_write_failed = true;
            LOG(ERROR) << "SSDSparseTable save failed, retry it! path:"
                       << channel_config.path << ", retry_num=" << retry_num;
            break;
          }
          ++feasign_size;
        }
      }

      if (err_no == -1 && !is_write_failed) {
        ++retry_num;
        is_write_failed = true;
        LOG(ERROR) << "SSDSparseTable save failed after write, retry it! "
                   << "path:" << channel_config.path
                   << " , retry_num=" << retry_num;
      }
      if (is_write_failed) {
        _afs_client.remove(channel_config.path);
        continue;
      }

      // delta and cache and revert is all in mem, base in rocksdb
      if (save_param != 1) {
        auto* it = _db->get_iterator(i);
        for (it->SeekToFirst(); it->Valid(); it->Next()) {
          bool need_save = _value_accesor->Save(
              paddle::string::str_to_float(it->value().data()), save_param);
          _value_accesor->UpdateStatAfterSave(
              paddle::string::str_to_float(it->value().data()), save_param);
          if (need_save) {
            std::string format_value = _value_accesor->ParseToString(
                paddle::string::str_to_float(it->value().data()),
                it->value().size() / sizeof(float));
            if (0 !=
                write_channel->write_line(paddle::string::format_string(
                    "%lu %s", *((uint64_t*)const_cast<char*>(it->key().data())),
                    format_value.c_str()))) {
              ++retry_num;
              is_write_failed = true;
              LOG(ERROR) << "SSDSparseTable save failed, retry it! path:"
                         << channel_config.path << ", retry_num=" << retry_num;
              break;
            }
            if (save_param == 3) {
              _db->put(i, it->key().data(), it->key().size(),
                       it->value().data(), it->value().size());
            }
            ++feasign_size;
          }
        }
        delete it;
      }

      write_channel->close();
      if (err_no == -1) {
        ++retry_num;
        is_write_failed = true;
        LOG(ERROR) << "SSDSparseTable save failed after write, retry it! "
                   << "path:" << channel_config.path
                   << " , retry_num=" << retry_num;
      }
      if (is_write_failed) {
        _afs_client.remove(channel_config.path);
      }
    } while (is_write_failed);
    feasign_size_all += feasign_size;
    for (auto it = shard.begin(); it != shard.end(); ++it) {
      _value_accesor->UpdateStatAfterSave(it.value().data(), save_param);
    }
  }
  if (save_param == 3) {
    UpdateTable();
    _cache_tk_size = LocalSize() * _config.sparse_table_cache_rate();
    LOG(INFO) << "SSDSparseTable update success.";
  }
  LOG(INFO) << "SSDSparseTable save success, path:"
            << paddle::string::format_string("%s/%03d/part-%03d-", path.c_str(),
                                             _config.table_id(), _shard_idx)
            << " from " << file_start_idx << " to "
            << file_start_idx + _real_local_shard_num - 1;
  // return feasign_size_all;
  _local_show_threshold = tk.top();
  LOG(INFO) << "local cache threshold: " << _local_show_threshold;
  // int32 may overflow need to change return value
  return 0;
}

int64_t SSDSparseTable::CacheShuffle(
    const std::string& path, const std::string& param, double cache_threshold,
    std::function<std::future<int32_t>(int msg_type, int to_pserver_id,
                                       std::string& msg)>
        send_msg_func,
    paddle::framework::Channel<std::pair<uint64_t, std::string>>&
        shuffled_channel,
    const std::vector<Table*>& table_ptrs) {
  LOG(INFO) << "cache shuffle with cache threshold: " << cache_threshold
            << " param:" << param;
  int save_param = atoi(param.c_str());  // batch_model:0  xbox:1
  if (!_config.enable_sparse_table_cache() || cache_threshold < 0) {
    LOG(WARNING)
        << "cache shuffle failed not enable table cache or cache threshold < 0 "
        << _config.enable_sparse_table_cache() << " or " << cache_threshold;
    // return -1;
  }
  int shuffle_node_num = _config.sparse_table_cache_file_num();
  LOG(INFO) << "Table>> shuffle node num is: " << shuffle_node_num;
  size_t file_start_idx = _avg_local_shard_num * _shard_idx;
  int thread_num = _real_local_shard_num < 20 ? _real_local_shard_num : 20;

  std::vector<
      paddle::framework::ChannelWriter<std::pair<uint64_t, std::string>>>
      writers(_real_local_shard_num);
  std::vector<std::vector<std::pair<uint64_t, std::string>>> datas(
      _real_local_shard_num);

  int feasign_size = 0;
  std::vector<paddle::framework::Channel<std::pair<uint64_t, std::string>>>
      tmp_channels;
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    tmp_channels.push_back(
        paddle::framework::MakeChannel<std::pair<uint64_t, std::string>>());
  }

  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    paddle::framework::ChannelWriter<std::pair<uint64_t, std::string>>& writer =
        writers[i];
    //    std::shared_ptr<paddle::framework::ChannelObject<std::pair<uint64_t,
    //    std::string>>> tmp_chan =
    //        paddle::framework::MakeChannel<std::pair<uint64_t,
    //        std::string>>();
    writer.Reset(tmp_channels[i].get());

    auto& shard = _local_shards[i];
    for (auto it = shard.begin(); it != shard.end(); ++it) {
      if (_value_accesor->SaveCache(it.value().data(), save_param,
                                    cache_threshold)) {
        std::string format_value =
            _value_accesor->ParseToString(it.value().data(), it.value().size());
        std::pair<uint64_t, std::string> pkv(it.key(), format_value.c_str());
        writer << pkv;
        ++feasign_size;
      }
    }

    writer.Flush();
    writer.channel()->Close();
  }
  LOG(INFO) << "SSDSparseTable cache KV save success to Channel feasigh size: "
            << feasign_size
            << " and start sparse cache data shuffle real local shard num: "
            << _real_local_shard_num;
  std::vector<std::pair<uint64_t, std::string>> local_datas;
  for (size_t idx_shard = 0; idx_shard < _real_local_shard_num; ++idx_shard) {
    paddle::framework::ChannelWriter<std::pair<uint64_t, std::string>>& writer =
        writers[idx_shard];
    auto channel = writer.channel();
    std::vector<std::pair<uint64_t, std::string>>& data = datas[idx_shard];
    std::vector<paddle::framework::BinaryArchive> ars(shuffle_node_num);
    while (channel->Read(data)) {
      for (auto& t : data) {
        auto pserver_id =
            paddle::distributed::local_random_engine()() % shuffle_node_num;
        if (pserver_id != _shard_idx) {
          ars[pserver_id] << t;
        } else {
          local_datas.emplace_back(std::move(t));
        }
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<uint32_t> send_data_size(shuffle_node_num, 0);
      std::vector<int> send_index(shuffle_node_num);
      for (int i = 0; i < shuffle_node_num; ++i) {
        send_index[i] = i;
      }
      std::random_shuffle(send_index.begin(), send_index.end());
      for (auto index = 0u; index < shuffle_node_num; ++index) {
        int i = send_index[index];
        if (i == _shard_idx) {
          continue;
        }
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = send_msg_func(101, i, msg);
        total_status.push_back(std::move(ret));
        send_data_size[i] += ars[i].Length();
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars = std::vector<paddle::framework::BinaryArchive>(shuffle_node_num);
      data = std::vector<std::pair<uint64_t, std::string>>();
    }
  }
  shuffled_channel->Write(std::move(local_datas));
  LOG(INFO) << "cache shuffle finished";
  return 0;
}

int32_t SSDSparseTable::SaveCache(
    const std::string& path, const std::string& param,
    paddle::framework::Channel<std::pair<uint64_t, std::string>>&
        shuffled_channel) {
  if (_shard_idx >= _config.sparse_table_cache_file_num()) {
    return 0;
  }
  int save_param = atoi(param.c_str());  // batch_model:0  xbox:1
  size_t file_start_idx = _avg_local_shard_num * _shard_idx;
  std::string table_path = paddle::string::format_string(
      "%s/%03d_cache/", path.c_str(), _config.table_id());
  _afs_client.remove(paddle::string::format_string(
      "%s/part-%03d", table_path.c_str(), _shard_idx));
  uint32_t feasign_size = 0;
  FsChannelConfig channel_config;
  // not compress cache model
  channel_config.path = paddle::string::format_string(
      "%s/part-%03d", table_path.c_str(), _shard_idx);
  channel_config.converter = _value_accesor->Converter(save_param).converter;
  channel_config.deconverter =
      _value_accesor->Converter(save_param).deconverter;
  auto write_channel = _afs_client.open_w(channel_config, 1024 * 1024 * 40);
  std::vector<std::pair<uint64_t, std::string>> data;
  bool is_write_failed = false;
  shuffled_channel->Close();
  while (shuffled_channel->Read(data)) {
    for (auto& t : data) {
      ++feasign_size;
600 601
      if (0 != write_channel->write_line(paddle::string::format_string(
                   "%lu %s", t.first, t.second.c_str()))) {
Z
zhaocaibei123 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        LOG(ERROR) << "Cache Table save failed, "
                      "path:"
                   << channel_config.path << ", retry it!";
        is_write_failed = true;
        break;
      }
    }
    data = std::vector<std::pair<uint64_t, std::string>>();
  }
  if (is_write_failed) {
    _afs_client.remove(channel_config.path);
  }
  write_channel->close();
  LOG(INFO) << "SSDSparseTable cache save success, feasign: " << feasign_size
            << ", path: " << channel_config.path;
  shuffled_channel->Open();
  return feasign_size;
}

int32_t SSDSparseTable::Load(const std::string& path,
                             const std::string& param) {
  return MemorySparseTable::Load(path, param);
}

//加载path目录下数据[start_idx, end_idx)
int32_t SSDSparseTable::Load(size_t start_idx, size_t end_idx,
                             const std::vector<std::string>& file_list,
                             const std::string& param) {
  if (start_idx >= file_list.size()) {
    return 0;
  }
  int load_param = atoi(param.c_str());
  size_t feature_value_size =
      _value_accesor->GetAccessorInfo().size / sizeof(float);
  size_t mf_value_size =
      _value_accesor->GetAccessorInfo().mf_size / sizeof(float);

  end_idx =
      end_idx < _sparse_table_shard_num ? end_idx : _sparse_table_shard_num;
  int thread_num = (end_idx - start_idx) < 20 ? (end_idx - start_idx) : 20;
  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = start_idx; i < end_idx; ++i) {
    FsChannelConfig channel_config;
    channel_config.path = file_list[i];
    channel_config.converter = _value_accesor->Converter(load_param).converter;
    channel_config.deconverter =
        _value_accesor->Converter(load_param).deconverter;

    int retry_num = 0;
    int err_no = 0;
    bool is_read_failed = false;
    std::vector<std::pair<char*, int>> ssd_keys;
    std::vector<std::pair<char*, int>> ssd_values;
    std::vector<uint64_t> tmp_key;
    ssd_keys.reserve(FLAGS_pserver_load_batch_size);
    ssd_values.reserve(FLAGS_pserver_load_batch_size);
    tmp_key.reserve(FLAGS_pserver_load_batch_size);
    do {
      ssd_keys.clear();
      ssd_values.clear();
      tmp_key.clear();
      err_no = 0;
      is_read_failed = false;
      std::string line_data;
      auto read_channel = _afs_client.open_r(channel_config, 0, &err_no);
      char* end = NULL;
      int local_shard_id = i % _avg_local_shard_num;
      auto& shard = _local_shards[local_shard_id];
      float data_buffer[FLAGS_pserver_load_batch_size * feature_value_size];
      float* data_buffer_ptr = data_buffer;
      uint64_t mem_count = 0;
      uint64_t ssd_count = 0;
      uint64_t mem_mf_count = 0;
      uint64_t ssd_mf_count = 0;
      try {
        while (read_channel->read_line(line_data) == 0 &&
               line_data.size() > 1) {
          uint64_t key = std::strtoul(line_data.data(), &end, 10);
          if (FLAGS_pserver_open_strict_check) {
            if (key % _sparse_table_shard_num != i) {
              LOG(WARNING) << "SSDSparseTable key:" << key
                           << " not match shard,"
                           << " file_idx:" << i
                           << " shard num:" << _sparse_table_shard_num
                           << " file:" << channel_config.path;
              continue;
            }
          }
          int value_size =
              _value_accesor->ParseFromString(++end, data_buffer_ptr);
          // ssd or mem
          if (_value_accesor->SaveSSD(data_buffer_ptr)) {
            tmp_key.emplace_back(key);
            ssd_keys.emplace_back(
                std::make_pair((char*)&tmp_key.back(), sizeof(uint64_t)));
            ssd_values.emplace_back(std::make_pair((char*)data_buffer_ptr,
                                                   value_size * sizeof(float)));
            data_buffer_ptr += feature_value_size;
            if (ssd_keys.size() == FLAGS_pserver_load_batch_size) {
              _db->put_batch(local_shard_id, ssd_keys, ssd_values,
                             ssd_keys.size());
              ssd_keys.clear();
              ssd_values.clear();
              tmp_key.clear();
              data_buffer_ptr = data_buffer;
            }
            ssd_count++;
            if (value_size > feature_value_size - mf_value_size) {
              ssd_mf_count++;
            }
          } else {
            auto& value = shard[key];
            value.resize(value_size);
            _value_accesor->ParseFromString(end, value.data());
            mem_count++;
            if (value_size > feature_value_size - mf_value_size) {
              mem_mf_count++;
            }
          }
        }
        // last batch
        if (ssd_keys.size() > 0) {
          _db->put_batch(local_shard_id, ssd_keys, ssd_values, ssd_keys.size());
        }
        read_channel->close();
        if (err_no == -1) {
          ++retry_num;
          is_read_failed = true;
          LOG(ERROR) << "SSDSparseTable load failed after read, retry it! path:"
                     << channel_config.path << " , retry_num=" << retry_num;
          continue;
        }

        _db->flush(local_shard_id);
        LOG(INFO) << "Table>> load done. ALL[" << mem_count + ssd_count
                  << "] MEM[" << mem_count << "] MEM_MF[" << mem_mf_count
                  << "] SSD[" << ssd_count << "] SSD_MF[" << ssd_mf_count
                  << "].";
      } catch (...) {
        ++retry_num;
        is_read_failed = true;
        LOG(ERROR) << "SSDSparseTable load failed after read, retry it! path:"
                   << channel_config.path << " , retry_num=" << retry_num;
      }
    } while (is_read_failed);
  }
  LOG(INFO) << "load num:" << LocalSize();
  LOG(INFO) << "SSDSparseTable load success, path from " << file_list[start_idx]
            << " to " << file_list[end_idx - 1];

  _cache_tk_size = LocalSize() * _config.sparse_table_cache_rate();
  return 0;
}

}  // namespace distributed
}  // namespace paddle