parallel_dygraph_mnist.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import contextlib
import unittest
import numpy as np
import six
import pickle

import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
29
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
30 31 32 33 34 35
from paddle.fluid.dygraph.base import to_variable

from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase


class SimpleImgConvPool(fluid.dygraph.Layer):
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
54
        super(SimpleImgConvPool, self).__init__()
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        self._conv2d = Conv2D(num_channels=num_channels,
                              num_filters=num_filters,
                              filter_size=filter_size,
                              stride=conv_stride,
                              padding=conv_padding,
                              dilation=conv_dilation,
                              groups=conv_groups,
                              param_attr=None,
                              bias_attr=None,
                              use_cudnn=use_cudnn)

        self._pool2d = Pool2D(pool_size=pool_size,
                              pool_type=pool_type,
                              pool_stride=pool_stride,
                              pool_padding=pool_padding,
                              global_pooling=global_pooling,
                              use_cudnn=use_cudnn)
73 74 75 76 77 78 79 80

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
81

82 83
    def __init__(self):
        super(MNIST, self).__init__()
84

85 86 87 88 89 90
        self._simple_img_conv_pool_1 = SimpleImgConvPool(1,
                                                         20,
                                                         5,
                                                         2,
                                                         2,
                                                         act="relu")
91

92 93 94 95 96 97
        self._simple_img_conv_pool_2 = SimpleImgConvPool(20,
                                                         50,
                                                         5,
                                                         2,
                                                         2,
                                                         act="relu")
98

99
        self.pool_2_shape = 50 * 4 * 4
100
        SIZE = 10
101
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
102 103 104 105 106 107
        self._fc = Linear(self.pool_2_shape,
                          10,
                          param_attr=fluid.param_attr.ParamAttr(
                              initializer=fluid.initializer.NormalInitializer(
                                  loc=0.0, scale=scale)),
                          act="softmax")
108

Y
Yan Xu 已提交
109
    def forward(self, inputs, label):
110 111
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
112
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
Y
Yan Xu 已提交
113 114
        cost = self._fc(x)
        loss = fluid.layers.cross_entropy(cost, label)
115
        avg_loss = paddle.mean(loss)
Y
Yan Xu 已提交
116
        return avg_loss
117 118 119


class TestMnist(TestParallelDyGraphRunnerBase):
120

121
    def get_model(self):
122
        model = MNIST()
123 124 125 126 127
        train_reader = paddle.batch(paddle.dataset.mnist.train(),
                                    batch_size=2,
                                    drop_last=True)
        opt = paddle.optimizer.Adam(learning_rate=1e-3,
                                    parameters=model.parameters())
128 129 130 131 132 133
        return model, train_reader, opt

    def run_one_loop(self, model, opt, data):
        batch_size = len(data)
        dy_x_data = np.array([x[0].reshape(1, 28, 28)
                              for x in data]).astype('float32')
134 135
        y_data = np.array([x[1] for x in data
                           ]).astype('int64').reshape(batch_size, 1)
136 137 138 139
        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True

Y
Yan Xu 已提交
140 141
        avg_loss = model(img, label)

142 143 144 145 146
        return avg_loss


if __name__ == "__main__":
    runtime_main(TestMnist)