tensor_kernels.cc 5.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/kernel/tensor_kernels.h"

#include <iostream>
#include <vector>

#include "paddle/infrt/common/global.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/kernel_utils.h"
#include "paddle/infrt/tensor/dense_host_tensor.h"
#include "paddle/infrt/tensor/dense_tensor_view.h"
#include "paddle/infrt/tensor/tensor_map.h"
#include "paddle/infrt/tensor/tensor_shape.h"

28 29
namespace infrt {
namespace kernel {
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
using namespace host_context;  // NOLINT
using namespace tensor;        // NOLINT

/// ===== Kernel begin ====

template <typename T>
DenseHostTensor CreateUninitTensor(Attribute<std::vector<int64_t>> shape) {
  const auto &shape_data = shape.get();
  auto array = llvm::ArrayRef<int64_t>(shape_data.data(), shape_data.size());
  auto type = GetDType<T>();
  return DenseHostTensor(TensorShape(array), type);
}

void PrintTensor(const DenseHostTensor &tensor) {
  std::cout << tensor << std::endl;
}

template <typename T>
void FillTensorWithConstant(DenseHostTensor *tensor, Attribute<T> v) {
  MutableDTArrayView<T>(tensor).Fill(v.get());
}

TensorMap LoadParams(const std::string &path) {
  return *(infrt::tensor::LoadParams(path));
}

56
void TensorMapGetTensor(TensorMap map,
57 58 59 60 61
                        DenseHostTensor *out,
                        Attribute<std::string> name) {
  auto it = map.find(name.get());
  CHECK(it != map.end()) << "No tensor called " << name.get()
                         << " in the TensorMap";
62
  *out = *it->second;
Y
Yan Chunwei 已提交
63 64
}

65 66
int32_t TensorMapGetSize(TensorMap map) { return map.size(); }

Y
Yan Chunwei 已提交
67 68
DenseHostTensor ShallowCopyTensor(DenseHostTensor v) { return v; }

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
template <typename T>
void NaiveElementwiseAdd(const DenseHostTensor &x,
                         const DenseHostTensor &y,
                         DenseHostTensor *out) {
  CHECK_EQ(x.shape().GetNumElements(), y.shape().GetNumElements());

  // Infer shape
  *out = DenseHostTensor(x.shape(), GetDType<T>());

  const T *x_data = static_cast<T *>(x.raw_data());
  const T *y_data = static_cast<T *>(y.raw_data());
  T *out_data = static_cast<T *>(out->raw_data());
  for (size_t i = 0, n = x.shape().GetNumElements(); i < n; i++) {
    out_data[i] = x_data[i] + y_data[i];
  }
}

//! A naive implementation for x matmul w
template <typename T>
void NaiveMatmul(const DenseHostTensor &x,
                 const DenseHostTensor &w,
                 DenseHostTensor *out) {
  CHECK_EQ(x.shape().GetRank(), 2);
  CHECK_EQ(w.shape().GetRank(), 2);
  CHECK_EQ(x.shape().GetDim(x.shape().GetRank() - 1), w.shape().GetDim(0));
  std::vector<int64_t> out_dims({x.shape().GetDim(0), w.shape().GetDim(1)});
  *out = DenseHostTensor(TensorShape(out_dims), GetDType<T>());

  auto *out_data = static_cast<T *>(out->raw_data());
  auto *x_data = static_cast<const T *>(x.raw_data());
  auto *w_data = static_cast<const T *>(w.raw_data());

  const int M = x.shape().GetDim(0);
  const int K = x.shape().GetDim(1);
  const int N = w.shape().GetDim(1);
  for (int i = 0; i < M; i++) {
    for (int j = 0; j < N; j++) {
      for (int k = 0; k < K; k++) {
        out_data[i * N + j] += x_data[i * K + k] * w_data[k * N + j];
      }
    }
  }
}

Y
Yan Chunwei 已提交
113 114 115 116 117 118 119 120 121 122 123
/// ===== Kernel end ====

void RegisterTensorKernels(host_context::KernelRegistry *registry) {
  registry->AddKernel("dt.create_uninit_tensor.f32",
                      INFRT_KERNEL(CreateUninitTensor<float>));
  registry->AddKernelAttrNameList("dt.create_uninit_tensor.f32", {"shape"});
  registry->AddKernel("dt.print_tensor", INFRT_KERNEL(PrintTensor));
  registry->AddKernel("dt.fill_tensor_with_constant.f32",
                      INFRT_KERNEL(FillTensorWithConstant<float>));
  registry->AddKernel("dt.fill_tensor_with_constant.f64",
                      INFRT_KERNEL(FillTensorWithConstant<double>));
124 125

  // TensorMap related methods.
Y
Yan Chunwei 已提交
126
  registry->AddKernel("dt.load_params", INFRT_KERNEL(LoadParams));
127 128 129 130
  registry->AddKernel("dt.tensor_map_get_tensor",
                      INFRT_KERNEL(TensorMapGetTensor));
  registry->AddKernel("dt.tensor_map_get_size", INFRT_KERNEL(TensorMapGetSize));

Y
Yan Chunwei 已提交
131 132
  registry->AddKernel("dt.shallow_copy_tensor",
                      INFRT_KERNEL(ShallowCopyTensor));
133 134 135 136 137

  // Naive kernels.
  registry->AddKernel("dt.naive_elementwise_add.f32",
                      INFRT_KERNEL(NaiveElementwiseAdd<float>));
  registry->AddKernel("dt.naive_matmul.f32", INFRT_KERNEL(NaiveMatmul<float>));
Y
Yan Chunwei 已提交
138 139
}

140 141
}  // namespace kernel
}  // namespace infrt