control_flow.py 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from functools import partial, reduce

import paddle
import paddle.fluid.core as core
from paddle.common_ops_import import (
    LayerHelper,
    _non_static_mode,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
from paddle.fluid.framework import Operator, Program, Variable

# Temporary solution, it will be deleted later
from paddle.fluid.layers.control_flow import cond
from paddle.fluid.layers.utils import (
    assert_same_structure,
    copy_mutable_vars,
    hold_mutable_vars,
    is_sequence,
    map_structure,
)


class BlockGuard:
    """
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
    """

    def __init__(self, main_program):
        if not isinstance(main_program, Program):
            raise TypeError("BlockGuard takes a program")
        self.main_program = main_program

    def __enter__(self):
        self.main_program._create_block()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.main_program._rollback()
        if exc_type is not None:
            return False  # re-raise exception
        return True


class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super().__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super().__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op._complete()
        return super().__exit__(exc_type, exc_val, exc_tb)


def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
                if in_var_name not in inner_outputs and not is_ignore_vars(
                    op, in_var_name
                ):
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


class While:
    """
    :api_attr: Static Graph

    while loop control flow. Repeat while body until cond is False.

    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

    Args:
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

    Examples 1:
          .. code-block:: python

            import paddle
            import numpy as np

            paddle.enable_static()

            i = paddle.full(shape=[1], dtype='int64', fill_value=0)           # loop counter

            loop_len = paddle.full(shape=[1],dtype='int64', fill_value=10)    # loop length

            cond = paddle.less_than(x=i, y=loop_len)
            while_op = paddle.static.nn.control_flow.While(cond=cond)
            with while_op.block():
                i = paddle.increment(x=i, value=1)
                paddle.assign(paddle.less_than(x=i, y=loop_len), output=cond)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            res = exe.run(paddle.static.default_main_program(), feed={}, fetch_list=[i])
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle
            import numpy as np

            paddle.enable_static()

            i = paddle.full(shape=[1], dtype='int64', fill_value=0)
            loop_len = paddle.full(shape=[1], dtype='int64', fill_value=10)
            one = paddle.full(shape=[1], dtype='float32', fill_value=1)
            data = paddle.static.data(name='data', shape=[1], dtype='float32')
            sums = paddle.full(shape=[1], dtype='float32', fill_value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = paddle.less_than(x=i, y=loop_len)
            while_op = paddle.static.nn.control_flow.While(cond=cond)
            with while_op.block():
                sums_tensor = paddle.add(x=data, y=data)
                paddle.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = paddle.increment(x=i, value=1)
                data = paddle.add(x=data, y=one)
                paddle.assign(paddle.less_than(x=i, y=loop_len), output=cond)

            feed_data = np.ones(1).astype('float32')
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            res = exe.run(paddle.static.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
    """

    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, is_test=False, name=None):
        self.helper = LayerHelper("while", name=name)
        self.status = While.BEFORE_WHILE_BLOCK
        check_variable_and_dtype(cond, 'cond', ['bool'], 'static.nn.While')
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError(
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
        self.cond_var = cond
        self.is_test = is_test

    def block(self):
        return WhileGuard(self)

    def _complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(
            main_program.current_block().parent_idx
        )

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper
        )

        out_vars = []
        for inner_out_name in inner_outputs:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)

        x_name_list |= set(map(lambda x: x.name, out_vars))
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES
        )

        parent_block.append_op(
            type='while',
            inputs={
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
            },
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )


support_ret_buildin_type = (bool, float, int)


def assign_skip_lod_tensor_array(input, output):
    """
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
    """

    def has_shape_diff(x_var, y_var):
        if len(x_var.shape) != len(y_var.shape):
            return True
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
        return False

    if not isinstance(input, (Variable, core.VarBase)):
        if isinstance(output, Variable) and isinstance(
            input, support_ret_buildin_type
        ):
            paddle.assign(input, output)
        else:
            output = input
        return

    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
        parent_block = main_program.block(
            main_program.current_block().parent_idx
        )
        if parent_block and not parent_block._find_var_recursive(input.name):
            paddle.assign(input, output)
    else:
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
            warnings.warn(
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
        paddle.assign(input, output)


def while_loop(cond, body, loop_vars, is_test=False, name=None):
    """
    :api_attr: Static Graph

    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

    Args:
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
            as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.

    Returns:
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()

            def cond(i, ten):
                return i < ten

            def body(i, ten):
                i = i + 1
                return [i, ten]

            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])

                exe = paddle.static.Executor(paddle.CPUPlace())
                res = exe.run(main_program, feed={}, fetch_list=[i])
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
    check_type(loop_vars, 'loop_vars', (list, tuple), 'static.nn.while_loop')
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'static.nn.while_loop'
    )
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
            "the shape of the variable returned by cond should be [1],"
            "but given shape as {0}.".format(list(pre_cond.shape))
        )

    if _non_static_mode():
        now_cond = pre_cond.numpy()[0]
        while now_cond:
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars"
                )
            now_cond = cond(*output_vars).numpy()[0]
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
        return loop_vars

    while_loop_block = While(pre_cond, is_test, name)
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
    with while_loop_block.block():
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
        try:
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
            raise ValueError(
                "body in while_loop should return the same arity "
                "(length and structure) as loop_vars: {0}".format(e)
            )
        now_cond = cond(*output_vars)
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
        paddle.assign(now_cond, pre_cond)
    return loop_vars


def _deal_with_undefined_var(output_vars, loop_vars):
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
    """
    from paddle.jit.dy2static.utils import (
        UndefinedVar,
        create_undefined_variable,
    )

    def create_var_like(o_var):
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
            return create_undefined_variable()
        if is_sequence(o_var):
            """
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


def _error_message(what, arg_name, op_name, right_value, error_value):
    error_message = (
        "{what} of '{arg_name}' in {op_name} must be "
        "{right_value}, but received: {error_value}.".format(
            what=what,
            arg_name=arg_name,
            op_name=op_name,
            right_value=right_value,
            error_value=error_value,
        )
    )

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
    :api_attr: Static Graph

    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            def fn_1():
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)

            def fn_2():
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)

            def fn_3():
                return paddle.full(shape=[3], dtype='int32', fill_value=3)

            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)

                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1

                # Call fn_1 because pred_1 is True
                out_1 = paddle.static.nn.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

                exe = paddle.static.Executor(paddle.CPUPlace())
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message(
                        "The elements' type",
                        "pred_fn_pairs",
                        "case",
                        tuple,
                        type(pred_fn),
                    )
                )
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message(
                        "The tuple's size",
                        "pred_fn_pairs",
                        "case",
                        "2",
                        str(len(pred_fn)) + "-tuple",
                    )
                )
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message(
                        "The pred's type",
                        "pred_fn_pairs",
                        "case",
                        "boolean Variable",
                        type(pred),
                    )
                )

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name)
                )

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
    :api_attr: Static Graph

    This operator is like a C++ switch/case statement.

    Args:
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
        TypeError: If the type of ``branch_index`` is not Tensor.
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            def fn_1():
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)

            def fn_2():
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)

            def fn_3():
                return paddle.full(shape=[3], dtype='int32', fill_value=3)

            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)

                out_1 = paddle.static.nn.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

                out_2 = paddle.static.nn.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn;,,_3 will be called because of the max index 7.
                out_3 = paddle.static.nn.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

                exe = paddle.static.Executor(paddle.CPUPlace())
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

        check_variable_and_dtype(
            branch_index,
            'branch_index',
            ['uint8', 'int32', 'int64'],
            'static.nn.switch_case',
        )

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = paddle.cast(branch_index, "int64")

        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')

        branch_fns = (
            branch_fns.items() if isinstance(branch_fns, dict) else branch_fns
        )

        branch_fns = (
            list(enumerate(branch_fns))
            if all(callable(fn) for fn in branch_fns)
            else branch_fns
        )

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message(
                        "The elements' type",
                        "branch_fns",
                        "switch_case",
                        tuple,
                        type(branch_fns),
                    )
                )

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message(
                        "The tuple's size",
                        "branch_fns",
                        "switch_case",
                        "2",
                        str(len(index_fn_pair)) + "-tuple",
                    )
                )

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message(
                        "The key's type",
                        "branch_fns",
                        "switch_case",
                        int,
                        type(key),
                    )
                )

            if key in keys_of_fns:
                raise ValueError(
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format(
                        key
                    )
                )
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
                    _error_message(
                        "The type of function for key {}".format(key),
                        "branch_fns",
                        "switch_case",
                        "callable",
                        type(fn),
                    )
                )

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = paddle.full(shape=[1], dtype="int64", fill_value=index)
            pred = paddle.equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()