trt_op_converter_pass.cc 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/infrt/dialect/tensorrt/trt_op_converter_pass.h"
W
Wilber 已提交
15 16

#include <glog/logging.h>
17 18
#include <mlir/IR/Builders.h>
#include <mlir/Transforms/DialectConversion.h>
W
Wilber 已提交
19 20

#include "paddle/infrt/dialect/dense_tensor.h"
21
#include "paddle/infrt/dialect/pd/ir/pd_ops.h"
W
Wilber 已提交
22 23
#include "paddle/infrt/dialect/phi/ir/infrt_phi_tensor.h"
#include "paddle/infrt/dialect/phi/ir/phi_base.h"
24
#include "paddle/infrt/dialect/tensorrt/convert.h"
S
Shang Zhizhou 已提交
25
#include "paddle/infrt/dialect/tensorrt/trt_dialect_types.h"
W
Wilber 已提交
26
#include "paddle/infrt/dialect/tensorrt/trt_ops.h"
27 28 29 30 31 32

namespace infrt {
namespace trt {

#include "paddle/infrt/dialect/tensorrt/pd_lower_to_trt.cpp.inc"  // NOLINT

S
Shang Zhizhou 已提交
33
struct PD2TRT_GraphLower : public ::mlir::RewritePattern {
34
  explicit PD2TRT_GraphLower(::mlir::MLIRContext *context)
35 36
      : ::mlir::RewritePattern(
            "infrt.graph", 1, context, {"trt.create_engine"}) {}
S
Shang Zhizhou 已提交
37 38
  ::mlir::LogicalResult matchAndRewrite(
      ::mlir::Operation *op, ::mlir::PatternRewriter &rewriter) const override {
39
    auto casted_op = ::llvm::dyn_cast<::infrt::GraphOp>(op);
S
Shang Zhizhou 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52
    ::mlir::Operation::operand_range inputs = casted_op.inputs();
    auto ods_loc = rewriter.getFusedLoc(op->getLoc());
    CreateEngineOp create_engine_op;
    // inputs
    ::mlir::SmallVector<::mlir::Value, 4> trt_inputs;
    for (auto v : inputs) {
      trt_inputs.push_back(v);
    }
    create_engine_op = rewriter.create<CreateEngineOp>(
        ods_loc,
        ::llvm::SmallVector<mlir::Type, 4>(1, EngineType::get()),
        trt_inputs,
        true /*run_once*/);
W
Wilber 已提交
53 54 55 56 57
    auto &block = create_engine_op.body().emplaceBlock();
    block.getOperations().splice(block.begin(),
                                 casted_op.getBody()->getOperations(),
                                 casted_op.getBody()->begin(),
                                 casted_op.getBody()->end());
S
Shang Zhizhou 已提交
58

W
Wilber 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    // trt.compute
    ::llvm::SmallVector<::mlir::Value, 4> replace_values2;
    auto ctx_op = rewriter.create<::infrt::phi::CreateGPUContextOp>(
        ods_loc,
        infrt::phi::ContextType::get(rewriter.getContext(),
                                     infrt::TargetType::GPU));
    auto compute_op = rewriter.create<EngineComputeOp>(
        ods_loc,
        ::infrt::DenseTensorListType::get(rewriter.getContext()),
        create_engine_op.engine(),
        ctx_op.output());
    auto tensor_list_val = compute_op.outputs();
    for (size_t i = 0; i < casted_op.getNumResults(); ++i) {
      auto res = casted_op->getResult(i);
      auto int_attr = mlir::IntegerAttr::get(
          mlir::IntegerType::get(rewriter.getContext(), 32), i);
      auto get_tensor_op = rewriter.create<::infrt::dt::TensorListGetTensorOp>(
          ods_loc, res.getType(), tensor_list_val, int_attr);
      replace_values2.push_back(get_tensor_op.output());
S
Shang Zhizhou 已提交
78
    }
W
Wilber 已提交
79 80
    ctx_op->moveBefore(ctx_op->getBlock(), ctx_op->getBlock()->begin());
    rewriter.replaceOp(op, replace_values2);
S
Shang Zhizhou 已提交
81 82 83 84
    return ::mlir::success();
  }
};

85 86 87 88 89 90 91 92 93 94
struct PD2TRT_Batch_Norm_Lower : public ::mlir::RewritePattern {
  explicit PD2TRT_Batch_Norm_Lower(::mlir::MLIRContext *context)
      : ::mlir::RewritePattern("pd.batch_norm", 1, context, {"trt.scaleNd"}) {}
  ::mlir::LogicalResult matchAndRewrite(
      ::mlir::Operation *op, ::mlir::PatternRewriter &rewriter) const override {
    auto casted_op = ::llvm::dyn_cast<infrt::pd::Batch_normOp>(op);
    ::mlir::SmallVector<::mlir::Value, 4> operands;
    ::mlir::Operation::operand_range Input = casted_op.getODSOperands(0);
    ::mlir::Operation::operand_range Scale = casted_op.getODSOperands(1);
    ::mlir::Operation::operand_range Bias = casted_op.getODSOperands(2);
95 96 97 98 99
    ::mlir::Operation::operand_range Mean = casted_op.getODSOperands(3);
    ::mlir::Operation::operand_range Variance = casted_op.getODSOperands(4);
    operands.push_back(Input[0]);
    operands.push_back(Bias[0]);
    operands.push_back(Scale[0]);
100 101

    // TODO(weishengying) : recompute this via params
102 103 104 105 106
    auto *scale_producer = Scale[0].getDefiningOp();
    auto create_scale_tensor_op =
        llvm::dyn_cast<::infrt::phi::CreateHostInitedDenseTensorOp>(
            scale_producer);
    CHECK_NOTNULL(create_scale_tensor_op);
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    auto *bias_producer = Bias[0].getDefiningOp();
    auto create_bias_tensor_op =
        llvm::dyn_cast<::infrt::phi::CreateHostInitedDenseTensorOp>(
            bias_producer);
    CHECK_NOTNULL(create_bias_tensor_op);

    auto *mean_producer = Mean[0].getDefiningOp();
    auto create_mean_tensor_op =
        llvm::dyn_cast<::infrt::phi::CreateHostInitedDenseTensorOp>(
            mean_producer);
    CHECK_NOTNULL(create_mean_tensor_op);

    auto *variance_producer = Variance[0].getDefiningOp();
    auto create_variance_tensor_op =
        llvm::dyn_cast<::infrt::phi::CreateHostInitedDenseTensorOp>(
            variance_producer);
    CHECK_NOTNULL(create_variance_tensor_op);

    llvm::SmallVector<double> scale_data;
    mlir::ArrayAttr scale_array_attr = create_scale_tensor_op.values();
    CHECK_GT(scale_array_attr.size(), 0U);
    CHECK(scale_array_attr[0].getType().isF32());
    scale_data.resize(scale_array_attr.size());
    for (size_t i = 0; i < scale_array_attr.size(); i++) {
      scale_data[i] =
          scale_array_attr[i].cast<mlir::FloatAttr>().getValueAsDouble();
    }

    llvm::SmallVector<double> bias_data;
    mlir::ArrayAttr bias_array_attr = create_bias_tensor_op.values();
    CHECK_GT(bias_array_attr.size(), 0U);
    CHECK(bias_array_attr[0].getType().isF32());
    bias_data.resize(bias_array_attr.size());
    for (size_t i = 0; i < bias_array_attr.size(); i++) {
      bias_data[i] =
          bias_array_attr[i].cast<mlir::FloatAttr>().getValueAsDouble();
144 145
    }

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    llvm::SmallVector<double> mean_data;
    mlir::ArrayAttr mean_array_attr = create_mean_tensor_op.values();
    CHECK_GT(mean_array_attr.size(), 0U);
    CHECK(mean_array_attr[0].getType().isF32());
    mean_data.resize(mean_array_attr.size());
    for (size_t i = 0; i < mean_array_attr.size(); i++) {
      mean_data[i] =
          mean_array_attr[i].cast<mlir::FloatAttr>().getValueAsDouble();
    }

    llvm::SmallVector<double> variance_data;
    mlir::ArrayAttr variance_array_attr = create_variance_tensor_op.values();
    CHECK_GT(variance_array_attr.size(), 0U);
    CHECK(variance_array_attr[0].getType().isF32());
    variance_data.resize(variance_array_attr.size());
    for (size_t i = 0; i < variance_array_attr.size(); i++) {
      variance_data[i] =
          variance_array_attr[i].cast<mlir::FloatAttr>().getValueAsDouble();
    }

    double eps = casted_op.epsilonAttr().getValueAsDouble();

    llvm::SmallVector<float> combile_scale_data;
    combile_scale_data.resize(scale_data.size());
    llvm::SmallVector<float> combile_bias_data;
    combile_bias_data.resize(bias_data.size());

    size_t ele_num = combile_scale_data.size();
    for (size_t i = 0; i < ele_num; i++) {
      float scale = scale_data[i];
      float bias = bias_data[i];
      float mean = mean_data[i];
      float variance = variance_data[i];
      combile_scale_data[i] = scale / sqrtf(variance + eps);
      combile_bias_data[i] = bias - mean * combile_scale_data[i];
    }

    rewriter.setInsertionPoint(create_scale_tensor_op);
    auto new_scale_op =
        rewriter.create<::infrt::phi::CreateHostInitedDenseTensorOp>(
            create_scale_tensor_op->getLoc(),
            create_scale_tensor_op.output().getType(),
            create_scale_tensor_op.context(),
            create_bias_tensor_op.dims(),
            ::infrt::LayoutAttr::get(rewriter.getContext(),
                                     ::infrt::LayoutType::NCHW),
            create_scale_tensor_op.lod(),
            rewriter.getF32ArrayAttr(combile_scale_data));
    rewriter.replaceOp(create_scale_tensor_op, new_scale_op->getResults());

    rewriter.setInsertionPoint(create_bias_tensor_op);
    auto new_bias_op =
        rewriter.create<::infrt::phi::CreateHostInitedDenseTensorOp>(
            create_bias_tensor_op->getLoc(),
            create_bias_tensor_op.output().getType(),
            create_bias_tensor_op.context(),
            create_bias_tensor_op.dims(),
            ::infrt::LayoutAttr::get(rewriter.getContext(),
                                     ::infrt::LayoutType::NCHW),
            create_bias_tensor_op.lod(),
            rewriter.getF32ArrayAttr(combile_bias_data));
    rewriter.replaceOp(create_bias_tensor_op, new_bias_op->getResults());

    rewriter.setInsertionPoint(op);
    trt::ScaleNdOp scaleNd_op;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    // resultTypes
    ::mlir::SmallVector<::mlir::Type, 4> resultTypes;
    for (auto v : casted_op.getODSResults(0)) {
      resultTypes.push_back(v.getType());
    }

    // attributes
    ::mlir::SmallVector<::mlir::NamedAttribute, 8> attributes;
    auto result = rewriter
                      .create<trt::ScaleNdOp>(
                          op->getLoc(), resultTypes, operands, attributes)
                      .getODSResults(0);
    ::llvm::SmallVector<::mlir::Value, 4> tblgen_repl_values;
    // TODO(weishengying) : update it
    for (uint32_t i = 0; i < casted_op.getNumResults(); i++) {
      for (auto v : ::llvm::SmallVector<::mlir::Value, 4>{result}) {
        tblgen_repl_values.push_back(v);
      }
    }
    rewriter.replaceOp(op, tblgen_repl_values);
    return ::mlir::success();
  }
};

235 236 237
void TRTOpConverterPass::runOnOperation() {
  // The first thing to define is the conversion target. This will define the
  // final target for this lowering.
238
  ::mlir::ConversionTarget target(getContext());
239 240 241 242 243

  // We define the specific operations, or dialects, that are legal targets for
  // this lowering. In our case, we are lowering to TensorRTDialect from
  // PaddleDialect
  target.addLegalDialect<TensorRTDialect>();
W
Wilber 已提交
244 245 246
  target.addLegalDialect<::infrt::phi::PHIDialect>();
  target.addLegalDialect<::infrt::dt::DTDialect>();
  target.addLegalDialect<phi::PHIDenseTensorDialect>();
247 248 249

  // Now that the conversion target has been defined, we just need to provide
  // the set of patterns that will lower the TensorRT operations.
250
  ::mlir::RewritePatternSet patterns(&getContext());
251
  populateWithGenerated(patterns);
252
  patterns.add<PD2TRT_Batch_Norm_Lower>(&getContext());
S
Shang Zhizhou 已提交
253
  patterns.add<PD2TRT_GraphLower>(&getContext());
254 255 256 257

  // With the target and rewrite patterns defined, we can now attempt the
  // conversion. The conversion will signal failure if any of our `illegal`
  // operations were not converted successfully.
258
  if (::mlir::failed(
259 260 261 262 263 264
          applyPartialConversion(getOperation(), target, std::move(patterns))))
    signalPassFailure();
}

}  // namespace trt
}  // namespace infrt