fleet_util.py 83.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Fleet Utils."""
15 16 17 18 19 20 21 22

import collections
import json
import logging
import math
import os
import sys
import time
meteor135's avatar
meteor135 已提交
23 24 25

import numpy as np

26
import paddle
27
from paddle import fluid
meteor135's avatar
meteor135 已提交
28
from paddle.distributed.fleet.utils.fs import HDFSClient
29
from paddle.fluid.log_helper import get_logger
30

meteor135's avatar
meteor135 已提交
31
from . import utils
32

33
__all__ = ["FleetUtil", "GPUPSUtil"]
34

35 36 37
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s %(levelname)s: %(message)s'
)
38

T
Thunderbrook 已提交
39
fleet = None
40

41

42
class FleetUtil:
43 44 45 46 47 48
    """
    FleetUtil provides some common functions for users' convenience.

    Examples:
        .. code-block:: python

49 50 51 52
            >>> # doctest: +REQUIRES(env:DISTRIBUTED)
            >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
            >>> fleet_util = FleetUtil()
            >>> fleet_util.rank0_print("my log")
53 54 55

    """

56 57 58
    def __init__(self, mode="pslib"):
        global fleet
        if mode == "pslib":
59
            from paddle.incubate.distributed.fleet.parameter_server.pslib import (
60 61 62
                fleet as fleet_pslib,
            )

63 64
            fleet = fleet_pslib
        elif mode == "transpiler":
65
            from paddle.incubate.distributed.fleet.parameter_server.distribute_transpiler import (
66 67 68
                fleet as fleet_transpiler,
            )

69 70 71
            fleet = fleet_transpiler
        else:
            raise ValueError(
72 73
                "Please choose one mode from [\"pslib\", \"transpiler\"]"
            )
74

75 76 77 78 79 80 81 82 83 84
    def rank0_print(self, s):
        """
        Worker of rank 0 print some log.

        Args:
            s(str): string to print

        Examples:
            .. code-block:: python

85 86 87 88
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.rank0_print("my log")
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

        """
        if fleet.worker_index() != 0:
            return
        print(s)
        sys.stdout.flush()

    def rank0_info(self, s):
        """
        Worker of rank 0 print some log info.

        Args:
            s(str): string to log

        Examples:
            .. code-block:: python

106 107 108 109
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.rank0_info("my log info")
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

        """
        if fleet.worker_index() != 0:
            return
        _logger.info(s)

    def rank0_error(self, s):
        """
        Worker of rank 0 print some log error.

        Args:
            s(str): string to log

        Examples:
            .. code-block:: python

126 127 128 129
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.rank0_error("my log error")
130 131 132 133 134 135

        """
        if fleet.worker_index() != 0:
            return
        _logger.error(s)

136 137 138 139 140 141 142
    def set_zero(
        self,
        var_name,
        scope=fluid.global_scope(),
        place=fluid.CPUPlace(),
        param_type="int64",
    ):
143 144 145 146 147 148 149 150 151 152 153 154
        """
        Set tensor of a Variable to zero.

        Args:
            var_name(str): name of Variable
            scope(Scope): Scope object, default is fluid.global_scope()
            place(Place): Place object, default is fluid.CPUPlace()
            param_type(str): param data type, default is int64

        Examples:
            .. code-block:: python

155 156 157 158 159
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> # doctest: +SKIP('dependency on custom variables')
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.set_zero(myvar.name, myscope)
160 161 162 163 164 165

        """
        param = scope.var(var_name).get_tensor()
        param_array = np.zeros(param._get_dims()).astype(param_type)
        param.set(param_array, place)

166 167 168 169 170 171 172
    def print_global_auc(
        self,
        scope=fluid.global_scope(),
        stat_pos="_generated_var_2",
        stat_neg="_generated_var_3",
        print_prefix="",
    ):
173
        r"""
174 175 176 177 178 179 180 181 182 183 184
        Print global auc of all distributed workers.

        Args:
            scope(Scope): Scope object, default is fluid.global_scope()
            stat_pos(str): name of auc pos bucket Variable
            stat_neg(str): name of auc neg bucket Variable
            print_prefix(str): prefix of print auc

        Examples:
            .. code-block:: python

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> # doctest: +SKIP('dependency on custom variables')
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.print_global_auc(myscope, stat_pos=stat_pos.name,
                ...                           stat_neg=stat_neg.name)

                >>> # below is part of model
                >>> emb = my_slot_net(slots, label) # emb can be fc layer of size 1
                >>> similarity_norm = fluid.layers.sigmoid(paddle.clip(
                ...     emb, min=-15.0, max=15.0), name="similarity_norm")
                >>> binary_predict = fluid.layers.concat(input=[
                ...     paddle.subtract(
                ...         fluid.layers.ceil(similarity_norm),
                ...         similarity_norm),
                ...     similarity_norm],
                ...     axis=1)
                >>> auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos,
                ...     stat_neg] = paddle.static.auc(input=binary_predict,
                ...                                   label=label,curve='ROC',
                ...                                   num_thresholds=4096)
206 207 208 209 210

        """
        auc_value = self.get_global_auc(scope, stat_pos, stat_neg)
        self.rank0_print(print_prefix + " global auc = %s" % auc_value)

211 212 213 214 215 216
    def get_global_auc(
        self,
        scope=fluid.global_scope(),
        stat_pos="_generated_var_2",
        stat_neg="_generated_var_3",
    ):
217 218 219 220 221 222 223 224 225 226 227 228 229 230
        """
        Get global auc of all distributed workers.

        Args:
            scope(Scope): Scope object, default is fluid.global_scope()
            stat_pos(str): name of auc pos bucket Variable
            stat_neg(str): name of auc neg bucket Variable

        Returns:
            auc_value(float), total_ins_num(int)

        Examples:
            .. code-block:: python

231 232 233 234 235 236 237
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> # doctest: +SKIP('dependency on custom variables')
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> auc_value, _ = fleet_util.get_global_auc(myscope,
                ...                                          stat_pos=stat_pos,
                ...                                          stat_neg=stat_neg)
238 239 240 241 242 243 244 245 246 247 248 249 250 251

        """
        if scope.find_var(stat_pos) is None or scope.find_var(stat_neg) is None:
            self.rank0_print("not found auc bucket")
            return None
        fleet._role_maker._barrier_worker()
        # auc pos bucket
        pos = np.array(scope.find_var(stat_pos).get_tensor())
        # auc pos bucket shape
        old_pos_shape = np.array(pos.shape)
        # reshape to one dim
        pos = pos.reshape(-1)
        global_pos = np.copy(pos) * 0
        # mpi allreduce
X
xujiaqi01 已提交
252
        fleet._role_maker._all_reduce(pos, global_pos)
253 254 255 256 257 258 259 260
        # reshape to its original shape
        global_pos = global_pos.reshape(old_pos_shape)

        # auc neg bucket
        neg = np.array(scope.find_var(stat_neg).get_tensor())
        old_neg_shape = np.array(neg.shape)
        neg = neg.reshape(-1)
        global_neg = np.copy(neg) * 0
X
xujiaqi01 已提交
261
        fleet._role_maker._all_reduce(neg, global_neg)
262 263 264 265 266 267 268 269 270 271
        global_neg = global_neg.reshape(old_neg_shape)

        # calculate auc
        num_bucket = len(global_pos[0])
        area = 0.0
        pos = 0.0
        neg = 0.0
        new_pos = 0.0
        new_neg = 0.0
        total_ins_num = 0
272
        for i in range(num_bucket):
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            index = num_bucket - 1 - i
            new_pos = pos + global_pos[0][index]
            total_ins_num += global_pos[0][index]
            new_neg = neg + global_neg[0][index]
            total_ins_num += global_neg[0][index]
            area += (new_neg - neg) * (pos + new_pos) / 2
            pos = new_pos
            neg = new_neg

        auc_value = None
        if pos * neg == 0 or total_ins_num == 0:
            auc_value = 0.5
        else:
            auc_value = area / (pos * neg)

        fleet._role_maker._barrier_worker()
        return auc_value

    def load_fleet_model_one_table(self, table_id, path):
        """
        load pslib model to one table

        Args:
            table_id(int): load model to one table, default is None, which mean
                           load all table.
            path(str): model path

        Examples:
            .. code-block:: python

303 304 305 306
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.load_fleet_model_one_table(1, path="hdfs:/my/model/path")
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        """
        fleet.load_one_table(table_id, path)

    def load_fleet_model(self, path, mode=0):
        """
        load pslib model

        Args:
            path(str): model path
            mode(str): 0 or 1, which means load checkpoint or delta model,
                       default is 0

        Examples:
            .. code-block:: python

322 323 324
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
325

326
                >>> fleet_util.load_fleet_model("hdfs:/my/model/path")
327

328
                >>> fleet_util.load_fleet_model("hdfs:/my/model/path", mode=0)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

        """
        fleet.init_server(path, mode=mode)

    def save_fleet_model(self, path, mode=0):
        """
        save pslib model

        Args:
            path(str): model path
            mode(str): 0 or 1, which means save checkpoint or delta model,
                       default is 0

        Examples:
            .. code-block:: python

345 346 347 348
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_fleet_model("hdfs:/my/model/path")
349 350 351 352

        """
        fleet.save_persistables(None, path, mode=mode)

353 354 355 356 357 358 359 360 361 362 363
    def _get_xbox_str(
        self,
        output_path,
        day,
        model_path,
        xbox_base_key,
        data_path,
        hadoop_fs_name,
        monitor_data={},
        mode="patch",
    ):
364
        xbox_dict = collections.OrderedDict()
365 366 367 368 369 370 371 372
        if mode == "base":
            xbox_dict["id"] = str(xbox_base_key)
        elif mode == "patch":
            xbox_dict["id"] = str(int(time.time()))
        else:
            print("warning: unknown mode %s, set it to patch" % mode)
            mode = "patch"
            xbox_dict["id"] = str(int(time.time()))
373
        xbox_dict["key"] = str(xbox_base_key)
374
        if model_path.startswith("hdfs:") or model_path.startswith("afs:"):
375
            model_path = model_path[model_path.find(":") + 1 :]
376
        xbox_dict["input"] = hadoop_fs_name + model_path.rstrip("/") + "/000"
377
        xbox_dict["record_count"] = "111111"
378
        xbox_dict["partition_type"] = "2"
379 380 381 382 383 384 385 386 387 388 389 390
        xbox_dict["job_name"] = "default_job_name"
        xbox_dict["ins_tag"] = "feasign"
        xbox_dict["ins_path"] = data_path
        job_id_with_host = os.popen("echo -n ${JOB_ID}").read().strip()
        instance_id = os.popen("echo -n ${INSTANCE_ID}").read().strip()
        start_pos = instance_id.find(job_id_with_host)
        end_pos = instance_id.find("--")
        if start_pos != -1 and end_pos != -1:
            job_id_with_host = instance_id[start_pos:end_pos]
        xbox_dict["job_id"] = job_id_with_host
        # currently hard code here, set monitor_data empty string
        xbox_dict["monitor_data"] = ""
391 392 393
        xbox_dict["monitor_path"] = (
            output_path.rstrip("/") + "/monitor/" + day + ".txt"
        )
394 395 396
        xbox_dict["mpi_size"] = str(fleet.worker_num())
        return json.dumps(xbox_dict)

397 398 399 400 401 402 403 404 405 406 407
    def write_model_donefile(
        self,
        output_path,
        day,
        pass_id,
        xbox_base_key,
        hadoop_fs_name,
        hadoop_fs_ugi,
        hadoop_home="$HADOOP_HOME",
        donefile_name="donefile.txt",
    ):
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        """
        write donefile when save model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id
            xbox_base_key(str|int): xbox base key
            hadoop_fs_name(str): hdfs/afs fs name
            hadoop_fs_ugi(str): hdfs/afs fs ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
            donefile_name(str): donefile name, default is "donefile.txt"

        Examples:
            .. code-block:: python

424 425 426 427 428 429 430 431 432
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.write_model_donefile(output_path="hdfs:/my/output",
                ...                                 day=20190723,
                ...                                 pass_id=66,
                ...                                 xbox_base_key=int(time.time()),
                ...                                 hadoop_fs_name="hdfs://xxx",
                ...                                 hadoop_fs_ugi="user,passwd")
433 434 435 436 437 438 439

        """
        day = str(day)
        pass_id = str(pass_id)
        xbox_base_key = int(xbox_base_key)

        if pass_id != "-1":
440
            suffix_name = f"/{day}/{pass_id}/"
441 442 443 444 445 446 447
            model_path = output_path.rstrip("/") + suffix_name
        else:
            suffix_name = "/%s/0/" % day
            model_path = output_path.rstrip("/") + suffix_name

        if fleet.worker_index() == 0:
            donefile_path = output_path + "/" + donefile_name
448 449 450 451 452 453 454
            content = "%s\t%lu\t%s\t%s\t%d" % (
                day,
                xbox_base_key,
                model_path,
                pass_id,
                0,
            )
455 456
            configs = {
                "fs.default.name": hadoop_fs_name,
457
                "hadoop.job.ugi": hadoop_fs_ugi,
458 459 460 461 462 463 464 465 466
            }
            client = HDFSClient(hadoop_home, configs)
            if client.is_file(donefile_path):
                pre_content = client.cat(donefile_path)
                pre_content_list = pre_content.split("\n")
                day_list = [i.split("\t")[0] for i in pre_content_list]
                pass_list = [i.split("\t")[3] for i in pre_content_list]
                exist = False
                for i in range(len(day_list)):
467 468 469
                    if int(day) == int(day_list[i]) and int(pass_id) == int(
                        pass_list[i]
                    ):
470 471 472 473 474 475 476
                        exist = True
                        break
                if not exist:
                    with open(donefile_name, "w") as f:
                        f.write(pre_content + "\n")
                        f.write(content + "\n")
                    client.delete(donefile_path)
477
                    client.upload(donefile_name, output_path)
478
                    self.rank0_error(
479
                        f"write {day}/{pass_id} {donefile_name} succeed"
480
                    )
481
                else:
482
                    self.rank0_error(
483 484
                        "not write {} because {}/{} already "
                        "exists".format(donefile_name, day, pass_id)
485
                    )
486 487 488
            else:
                with open(donefile_name, "w") as f:
                    f.write(content + "\n")
489
                client.upload(donefile_name, output_path)
490
                self.rank0_error(
491
                    f"write {day}/{pass_id} {donefile_name} succeed"
492
                )
493 494
        fleet._role_maker._barrier_worker()

495 496 497 498 499 500 501 502 503 504 505 506 507
    def write_xbox_donefile(
        self,
        output_path,
        day,
        pass_id,
        xbox_base_key,
        data_path,
        hadoop_fs_name,
        hadoop_fs_ugi,
        monitor_data={},
        hadoop_home="$HADOOP_HOME",
        donefile_name=None,
    ):
508 509 510 511 512 513 514 515 516 517 518 519 520
        """
        write delta donefile or xbox base donefile

        Args:
            output_path(str): output path
            day(str|int): training day of model
            pass_id(str|int): training pass id of model
            xbox_base_key(str|int): xbox base key
            data_path(str|list): training data path
            hadoop_fs_name(str): hdfs/afs fs name
            hadoop_fs_ugi(str): hdfs/afs fs ugi
            monitor_data(dict): metrics
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
521
            donefile_name(str): donefile name, default is None"
522 523 524 525

        Examples:
            .. code-block:: python

526 527 528 529 530 531 532 533 534 535 536 537
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.write_xbox_donefile(
                ...     output_path="hdfs:/my/output/",
                ...     day=20190722,
                ...     pass_id=1,
                ...     xbox_base_key=int(time.time()),
                ...     data_path="hdfs:/my/data/",
                ...     hadoop_fs_name="hdfs://xxx",
                ...     hadoop_fs_ugi="user,passwd",
                ...     monitor_data={})
538 539 540 541 542

        """
        day = str(day)
        pass_id = str(pass_id)
        xbox_base_key = int(xbox_base_key)
543
        mode = None
544 545

        if pass_id != "-1":
546
            mode = "patch"
547
            suffix_name = f"/{day}/delta-{pass_id}/"
548
            model_path = output_path.rstrip("/") + suffix_name
549 550
            if donefile_name is None:
                donefile_name = "xbox_patch_done.txt"
551
        else:
552
            mode = "base"
553 554
            suffix_name = "/%s/base/" % day
            model_path = output_path.rstrip("/") + suffix_name
555 556
            if donefile_name is None:
                donefile_name = "xbox_base_done.txt"
557 558 559 560 561 562

        if isinstance(data_path, list):
            data_path = ",".join(data_path)

        if fleet.worker_index() == 0:
            donefile_path = output_path + "/" + donefile_name
563 564 565 566 567 568 569 570 571 572
            xbox_str = self._get_xbox_str(
                output_path,
                day,
                model_path,
                xbox_base_key,
                data_path,
                hadoop_fs_name,
                monitor_data={},
                mode=mode,
            )
573 574
            configs = {
                "fs.default.name": hadoop_fs_name,
575
                "hadoop.job.ugi": hadoop_fs_ugi,
576 577 578 579 580 581 582 583
            }
            client = HDFSClient(hadoop_home, configs)
            if client.is_file(donefile_path):
                pre_content = client.cat(donefile_path)
                last_dict = json.loads(pre_content.split("\n")[-1])
                last_day = last_dict["input"].split("/")[-3]
                last_pass = last_dict["input"].split("/")[-2].split("-")[-1]
                exist = False
584 585 586 587 588
                if (
                    int(day) < int(last_day)
                    or int(day) == int(last_day)
                    and int(pass_id) <= int(last_pass)
                ):
589 590 591 592 593 594
                    exist = True
                if not exist:
                    with open(donefile_name, "w") as f:
                        f.write(pre_content + "\n")
                        f.write(xbox_str + "\n")
                    client.delete(donefile_path)
595
                    client.upload(donefile_name, output_path)
596
                    self.rank0_error(
597
                        f"write {day}/{pass_id} {donefile_name} succeed"
598
                    )
599
                else:
600
                    self.rank0_error(
601 602
                        "not write {} because {}/{} already "
                        "exists".format(donefile_name, day, pass_id)
603
                    )
604 605 606
            else:
                with open(donefile_name, "w") as f:
                    f.write(xbox_str + "\n")
607
                client.upload(donefile_name, output_path)
608
                self.rank0_error(
609
                    f"write {day}/{pass_id} {donefile_name} succeed"
610
                )
611 612
        fleet._role_maker._barrier_worker()

613 614 615 616 617 618 619 620 621 622
    def write_cache_donefile(
        self,
        output_path,
        day,
        pass_id,
        key_num,
        hadoop_fs_name,
        hadoop_fs_ugi,
        hadoop_home="$HADOOP_HOME",
        donefile_name="sparse_cache.meta",
623
        **kwargs,
624
    ):
625 626 627 628 629 630 631 632 633 634 635 636
        """
        write cache donefile

        Args:
            output_path(str): output path
            day(str|int): training day of model
            pass_id(str|int): training pass id of model
            key_num(str|int): save cache return value
            hadoop_fs_name(str): hdfs/afs fs name
            hadoop_fs_ugi(str): hdfs/afs fs ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
            donefile_name(str): donefile name, default is "sparse_cache.meta"
637 638 639
            kwargs(dict): user defined properties
                          file_num(int): cache file num
                          table_id(int): cache table id
640 641 642 643

        Examples:
            .. code-block:: python

644 645 646 647 648 649 650 651 652 653
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.write_cache_donefile(
                ...     output_path="hdfs:/my/output/",
                ...     day=20190722,
                ...     pass_id=1,
                ...     key_num=123456,
                ...     hadoop_fs_name="hdfs://xxx",
                ...     hadoop_fs_ugi="user,passwd")
654 655 656 657 658

        """
        day = str(day)
        pass_id = str(pass_id)
        key_num = int(key_num)
659 660
        file_num = kwargs.get("file_num", 16)
        table_id = kwargs.get("table_id", 0)
661 662

        if pass_id != "-1":
663
            suffix_name = "/%s/delta-%s/%03d_cache" % (day, pass_id, table_id)
664 665
            model_path = output_path.rstrip("/") + suffix_name
        else:
666
            suffix_name = "/%s/base/%03d_cache" % (day, table_id)
667 668 669 670 671 672
            model_path = output_path.rstrip("/") + suffix_name

        if fleet.worker_index() == 0:
            donefile_path = model_path + "/" + donefile_name
            configs = {
                "fs.default.name": hadoop_fs_name,
673
                "hadoop.job.ugi": hadoop_fs_ugi,
674 675 676
            }
            client = HDFSClient(hadoop_home, configs)
            if client.is_file(donefile_path):
677 678 679
                self.rank0_error(
                    "not write because %s already exists" % donefile_path
                )
680
            else:
681 682 683 684
                meta_str = "file_prefix:part\npart_num:%s\nkey_num:%d\n" % (
                    file_num,
                    key_num,
                )
685 686
                with open(donefile_name, "w") as f:
                    f.write(meta_str)
687
                client.upload(donefile_name, model_path)
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
                self.rank0_error("write %s succeed" % donefile_path)
        fleet._role_maker._barrier_worker()

    def load_model(self, output_path, day, pass_id):
        """
        load pslib model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id

        Examples:
            .. code-block:: python

703 704 705 706
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.load_model("hdfs:/my/path", 20190722, 88)
707 708 709 710

        """
        day = str(day)
        pass_id = str(pass_id)
711
        suffix_name = f"/{day}/{pass_id}/"
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
        load_path = output_path + suffix_name
        self.rank0_error("going to load_model %s" % load_path)
        self.load_fleet_model(load_path)
        self.rank0_error("load_model done")

    def save_model(self, output_path, day, pass_id):
        """
        save pslib model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id

        Examples:
            .. code-block:: python

729 730 731 732
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_model("hdfs:/my/path", 20190722, 88)
733 734 735 736

        """
        day = str(day)
        pass_id = str(pass_id)
737
        suffix_name = f"/{day}/{pass_id}/"
738
        model_path = output_path + suffix_name
J
jiaqi 已提交
739
        self.rank0_print("going to save_model %s" % model_path)
740
        self.save_fleet_model(model_path)
J
jiaqi 已提交
741
        self.rank0_print("save_model done")
742 743 744 745 746 747 748 749 750 751 752 753

    def save_batch_model(self, output_path, day):
        """
        save batch model

        Args:
            output_path(str): output path
            day(str|int): training day

        Examples:
            .. code-block:: python

754 755 756 757
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_batch_model("hdfs:/my/path", 20190722)
758 759 760 761 762

        """
        day = str(day)
        suffix_name = "/%s/0/" % day
        model_path = output_path + suffix_name
J
jiaqi 已提交
763
        self.rank0_print("going to save_model %s" % model_path)
764
        fleet.save_persistables(None, model_path, mode=3)
J
jiaqi 已提交
765
        self.rank0_print("save_batch_model done")
766 767 768 769 770 771 772 773 774 775 776 777 778

    def save_delta_model(self, output_path, day, pass_id):
        """
        save delta model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id

        Examples:
            .. code-block:: python

779 780 781 782
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_delta_model("hdfs:/my/path", 20190722, 88)
783 784 785 786

        """
        day = str(day)
        pass_id = str(pass_id)
787
        suffix_name = f"/{day}/delta-{pass_id}/"
788
        model_path = output_path + suffix_name
J
jiaqi 已提交
789
        self.rank0_print("going to save_delta_model %s" % model_path)
790
        fleet.save_persistables(None, model_path, mode=1)
J
jiaqi 已提交
791
        self.rank0_print("save_delta_model done")
792 793 794 795 796 797 798 799 800 801 802 803

    def save_xbox_base_model(self, output_path, day):
        """
        save xbox base model

        Args:
            output_path(str): output path
            day(str|int): training day

        Examples:
            .. code-block:: python

804 805 806 807
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_xbox_base_model("hdfs:/my/path", 20190722)
808 809 810 811 812

        """
        day = str(day)
        suffix_name = "/%s/base/" % day
        model_path = output_path + suffix_name
J
jiaqi 已提交
813
        self.rank0_print("going to save_xbox_base_model " + model_path)
814
        fleet.save_persistables(None, model_path, mode=2)
J
jiaqi 已提交
815
        self.rank0_print("save_xbox_base_model done")
816

817
    def save_cache_model(self, output_path, day, pass_id, mode=1, **kwargs):
818 819 820 821 822 823 824
        """
        save cache model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id
825
            mode(str|int): save mode
826 827
            kwargs(dict): user defined properties
                          table_id(int): table id to save cache
828 829 830 831 832 833 834

        Returns:
            key_num(int): cache key num

        Examples:
            .. code-block:: python

835 836 837 838
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_cache_model("hdfs:/my/path", 20190722, 88)
839 840 841 842

        """
        day = str(day)
        pass_id = str(pass_id)
843
        mode = int(mode)
844
        table_id = kwargs.get("table_id", 0)
845
        suffix_name = f"/{day}/delta-{pass_id}"
846
        model_path = output_path.rstrip("/") + suffix_name
J
jiaqi 已提交
847
        self.rank0_print("going to save_cache_model %s" % model_path)
848 849 850
        key_num = fleet.save_cache_model(
            None, model_path, mode=mode, table_id=table_id
        )
J
jiaqi 已提交
851
        self.rank0_print("save_cache_model done")
852 853
        return key_num

854
    def save_cache_base_model(self, output_path, day, **kwargs):
855 856 857 858 859 860 861
        """
        save cache model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id
862 863
            kwargs(dict): user defined properties
                          table_id(int): table id to save cache
864 865 866 867 868 869 870

        Returns:
            key_num(int): cache key num

        Examples:
            .. code-block:: python

871 872 873 874
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_cache_base_model("hdfs:/my/path", 20190722)
875 876 877

        """
        day = str(day)
878
        table_id = kwargs.get("table_id", 0)
879 880
        suffix_name = "/%s/base" % day
        model_path = output_path.rstrip("/") + suffix_name
J
jiaqi 已提交
881
        self.rank0_print("going to save_cache_base_model %s" % model_path)
882 883 884
        key_num = fleet.save_cache_model(
            None, model_path, mode=2, table_id=table_id
        )
J
jiaqi 已提交
885
        self.rank0_print("save_cache_base_model done")
886 887 888 889 890 891 892 893 894 895 896 897 898
        return key_num

    def pull_all_dense_params(self, scope, program):
        """
        pull all dense params in trainer of rank 0

        Args:
            scope(Scope): fluid Scope
            program(Program): fluid Program

        Examples:
            .. code-block:: python

899 900 901 902 903
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> # doctest: +SKIP('dependency on custom variables')
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.pull_all_dense_params(my_scope, my_program)
904 905 906 907 908

        """
        fleet._role_maker._barrier_worker()
        if fleet._role_maker.is_first_worker():
            prog_id = str(id(program))
909 910 911 912 913
            tables = (
                fleet._opt_info["program_id_to_worker"][prog_id]
                .get_desc()
                .dense_table
            )
914 915 916 917 918 919 920 921 922 923 924 925 926 927
            prog_conf = fleet._opt_info['program_configs'][prog_id]
            prog_tables = {}
            for key in prog_conf:
                if "dense" not in key:
                    continue
                for table_id in prog_conf[key]:
                    prog_tables[int(table_id)] = 0
            for table in tables:
                if int(table.table_id) not in prog_tables:
                    continue
                var_name_list = []
                for i in range(0, len(table.dense_variable_name)):
                    var_name = table.dense_variable_name[i]
                    if scope.find_var(var_name) is None:
928 929 930 931 932 933
                        raise ValueError(
                            "var "
                            + var_name
                            + " not found in scope "
                            + "when pull dense"
                        )
934
                    var_name_list.append(var_name)
935 936 937
                fleet._fleet_ptr.pull_dense(
                    scope, int(table.table_id), var_name_list
                )
938 939
        fleet._role_maker._barrier_worker()

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    def save_paddle_inference_model(
        self,
        executor,
        scope,
        program,
        feeded_vars,
        target_vars,
        output_path,
        day,
        pass_id,
        hadoop_fs_name,
        hadoop_fs_ugi,
        hadoop_home="$HADOOP_HOME",
        save_combine=True,
    ):
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        """
        save paddle inference model, and upload to hdfs dnn_plugin path

        Args:
            executor(Executor): fluid Executor
            scope(Scope): fluid Scope
            program(Program): fluid Program
            feeded_vars(list[Variable]): feed vars
            target_vars(list[variable]): fetch vars
            output_path(str): hdfs/afs output path
            day(str|int): training day
            pass_id(str|int): training pass
            hadoop_fs_name(str): hadoop fs name
            hadoop_fs_ugi(str): hadoop fs ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
T
tianshuo78520a 已提交
970
            save_combine(bool): whether to save in a file or separate files,
971 972 973 974 975
                                default is True

        Examples:
            .. code-block:: python

976 977 978 979 980 981 982 983 984 985 986 987 988 989
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> # doctest: +SKIP('dependency on custom variables')
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_paddle_inference_model(exe,
                ...                                        join_scope,
                ...                                        join_program,
                ...                                        feeded_vars,
                ...                                        target_vars,
                ...                                        "hdfs:/my/output/path/",
                ...                                        day=20190727,
                ...                                        pass_id=6,
                ...                                        hadoop_fs_name="xxx",
                ...                                        hadoop_fs_ugi="xxx,xxx")
990 991 992 993 994 995 996 997 998
        """
        day = str(day)
        pass_id = str(pass_id)
        model_name = "inference_model"
        # pull dense before save
        self.pull_all_dense_params(scope, program)
        if fleet.worker_index() == 0:
            with fluid.scope_guard(scope):
                if save_combine:
999 1000 1001 1002 1003 1004
                    paddle.static.io.save_inference_model(
                        model_name,
                        feeded_vars,
                        target_vars,
                        executor,
                        program=program.clone(),
1005
                    )
1006
                else:
1007 1008 1009 1010 1011 1012
                    paddle.static.io.save_inference_model(
                        model_name,
                        feeded_vars,
                        target_vars,
                        executor,
                        program=program.clone(),
1013
                    )
1014 1015 1016

            configs = {
                "fs.default.name": hadoop_fs_name,
1017
                "hadoop.job.ugi": hadoop_fs_ugi,
1018 1019 1020 1021
            }
            client = HDFSClient(hadoop_home, configs)

            if pass_id == "-1":
1022
                dest = f"{output_path}/{day}/base/dnn_plugin/"
1023
            else:
1024
                dest = "{}/{}/delta-{}/dnn_plugin/".format(
1025 1026 1027 1028
                    output_path,
                    day,
                    pass_id,
                )
1029 1030 1031
            if not client.is_exist(dest):
                client.makedirs(dest)

1032
            client.upload(model_name, dest, multi_processes=5, overwrite=True)
1033 1034 1035

        fleet._role_maker._barrier_worker()

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    def save_paddle_params(
        self,
        executor,
        scope,
        program,
        model_name,
        output_path,
        day,
        pass_id,
        hadoop_fs_name,
        hadoop_fs_ugi,
        hadoop_home="$HADOOP_HOME",
        var_names=None,
        save_combine=True,
    ):
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        """
        save paddle model, and upload to hdfs dnn_plugin path

        Args:
            executor(Executor): fluid Executor
            scope(Scope): fluid Scope
            program(Program): fluid Program
            model_name(str): save model local dir or filename
            output_path(str): hdfs/afs output path
            day(str|int): training day
            pass_id(str|int): training pass
            hadoop_fs_name(str): hadoop fs name
            hadoop_fs_ugi(str): hadoop fs ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
            var_names(list): save persistable var names, default is None
T
tianshuo78520a 已提交
1066
            save_combine(bool): whether to save in a file or separate files,
1067 1068 1069 1070 1071
                                default is True

        Examples:
            .. code-block:: python

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> # doctest: +SKIP('dependency on custom variables')
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.save_paddle_params(exe,
                ...                               join_scope,
                ...                               join_program,
                ...                               "paddle_dense.model.0",
                ...                               "hdfs:/my/output/path/",
                ...                               day=20190727,
                ...                               pass_id=6,
                ...                               hadoop_fs_name="xxx",
                ...                               hadoop_fs_ugi="xxx,xxx",
                ...                               var_names=join_all_var_names)
                >>> fleet_util.save_paddle_params(exe,
                ...                               join_scope,
                ...                               join_program,
                ...                               "paddle_dense.model.usr.0",
                ...                               "hdfs:/my/output/path/",
                ...                               day=20190727,
                ...                               pass_id=6,
                ...                               hadoop_fs_name="xxx",
                ...                               hadoop_fs_ugi="xxx,xxx",
                ...                               var_names=join_user_var_names)
                >>> fleet_util.save_paddle_params(exe,
                ...                               join_scope,
                ...                               join_program,
                ...                               "paddle_dense.model.item.0",
                ...                               "hdfs:/my/output/path/",
                ...                               day=20190727,
                ...                               pass_id=6,
                ...                               hadoop_fs_name="xxx",
                ...                               hadoop_fs_ugi="xxx,xxx",
                ...                               var_names=join_user_item_names)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

        """
        day = str(day)
        pass_id = str(pass_id)
        # pull dense before save
        self.pull_all_dense_params(scope, program)
        if fleet.worker_index() == 0:
            vars = [program.global_block().var(i) for i in var_names]
            with fluid.scope_guard(scope):
                if save_combine:
1116
                    paddle.static.io.save_vars(
1117 1118
                        executor, "./", program, vars=vars, filename=model_name
                    )
1119
                else:
1120 1121 1122
                    paddle.static.io.save_vars(
                        executor, model_name, program, vars=vars
                    )
1123 1124 1125

            configs = {
                "fs.default.name": hadoop_fs_name,
1126
                "hadoop.job.ugi": hadoop_fs_ugi,
1127 1128 1129 1130
            }
            client = HDFSClient(hadoop_home, configs)

            if pass_id == "-1":
1131
                dest = f"{output_path}/{day}/base/dnn_plugin/"
1132
            else:
1133
                dest = "{}/{}/delta-{}/dnn_plugin/".format(
1134 1135 1136 1137
                    output_path,
                    day,
                    pass_id,
                )
1138
            if not client.is_exist(dest):
1139 1140
                client.mkdirs(dest)
            client.upload(model_name, dest, multi_processes=5, overwrite=True)
1141 1142 1143

        fleet._role_maker._barrier_worker()

1144 1145 1146 1147 1148 1149 1150
    def get_last_save_xbox_base(
        self,
        output_path,
        hadoop_fs_name,
        hadoop_fs_ugi,
        hadoop_home="$HADOOP_HOME",
    ):
1151
        r"""
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        get last saved base xbox info from xbox_base_done.txt

        Args:
            output_path(str): output path
            hadoop_fs_name(str): hdfs/afs fs_name
            hadoop_fs_ugi(str): hdfs/afs fs_ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"

        Returns:
            [last_save_day, last_path, xbox_base_key]
            last_save_day(int): day of saved model
            last_path(str): model path
            xbox_base_key(int): xbox key

        Examples:
            .. code-block:: python

1169 1170 1171 1172 1173 1174 1175
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> last_save_day, last_path, xbox_base_key = \
                ...     fleet_util.get_last_save_xbox_base("hdfs:/my/path",
                ...                                        hadoop_fs_name="hdfs://xxx",
                ...                                        hadoop_fs_ugi="user,passwd")
1176 1177 1178 1179 1180

        """
        donefile_path = output_path + "/xbox_base_done.txt"
        configs = {
            "fs.default.name": hadoop_fs_name,
1181
            "hadoop.job.ugi": hadoop_fs_ugi,
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        }
        client = HDFSClient(hadoop_home, configs)
        if not client.is_file(donefile_path):
            return [-1, -1, int(time.time())]
        pre_content = client.cat(donefile_path)
        last_dict = json.loads(pre_content.split("\n")[-1])
        last_day = int(last_dict["input"].split("/")[-3])
        last_path = "/".join(last_dict["input"].split("/")[:-1])
        xbox_base_key = int(last_dict["key"])
        return [last_day, last_path, xbox_base_key]

1193 1194 1195 1196 1197 1198 1199
    def get_last_save_xbox(
        self,
        output_path,
        hadoop_fs_name,
        hadoop_fs_ugi,
        hadoop_home="$HADOOP_HOME",
    ):
1200
        r"""
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        get last saved xbox info from xbox_patch_done.txt

        Args:
            output_path(str): output path
            hadoop_fs_name(str): hdfs/afs fs_name
            hadoop_fs_ugi(str): hdfs/afs fs_ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"

        Returns:
            [last_save_day, last_save_pass, last_path, xbox_base_key]
            last_save_day(int): day of saved model
            last_save_pass(int): pass id of saved
            last_path(str): model path
            xbox_base_key(int): xbox key

        Examples:
            .. code-block:: python

1219 1220 1221 1222 1223 1224 1225
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> last_save_day, last_save_pass, last_path, xbox_base_key = \
                ...     fleet_util.get_last_save_xbox("hdfs:/my/path",
                ...                                   hadoop_fs_name="hdfs://xxx",
                ...                                   hadoop_fs_ugi="user,passwd")
1226 1227 1228 1229 1230

        """
        donefile_path = output_path + "/xbox_patch_done.txt"
        configs = {
            "fs.default.name": hadoop_fs_name,
1231
            "hadoop.job.ugi": hadoop_fs_ugi,
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        }
        client = HDFSClient(hadoop_home, configs)
        if not client.is_file(donefile_path):
            return [-1, -1, "", int(time.time())]
        pre_content = client.cat(donefile_path)
        last_dict = json.loads(pre_content.split("\n")[-1])
        last_day = int(last_dict["input"].split("/")[-3])
        last_pass = int(last_dict["input"].split("/")[-2].split("-")[-1])
        last_path = "/".join(last_dict["input"].split("/")[:-1])
        xbox_base_key = int(last_dict["key"])
        return [last_day, last_pass, last_path, xbox_base_key]

1244 1245 1246 1247 1248 1249 1250
    def get_last_save_model(
        self,
        output_path,
        hadoop_fs_name,
        hadoop_fs_ugi,
        hadoop_home="$HADOOP_HOME",
    ):
1251
        r"""
1252 1253 1254 1255 1256 1257 1258 1259 1260
        get last saved model info from donefile.txt

        Args:
            output_path(str): output path
            hadoop_fs_name(str): hdfs/afs fs_name
            hadoop_fs_ugi(str): hdfs/afs fs_ugi
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"

        Returns:
1261
            [last_save_day, last_save_pass, last_path, xbox_base_key]
1262 1263 1264
            last_save_day(int): day of saved model
            last_save_pass(int): pass id of saved
            last_path(str): model path
1265
            xbox_base_key(int): xbox key
1266 1267 1268 1269

        Examples:
            .. code-block:: python

1270 1271 1272 1273 1274 1275 1276
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> last_save_day, last_save_pass, last_path, xbox_base_key = \
                ...     fleet_util.get_last_save_model("hdfs:/my/path",
                ...                                    hadoop_fs_name="hdfs://xxx",
                ...                                    hadoop_fs_ugi="user,passwd")
1277 1278 1279 1280 1281 1282 1283 1284

        """
        last_save_day = -1
        last_save_pass = -1
        last_path = ""
        donefile_path = output_path + "/donefile.txt"
        configs = {
            "fs.default.name": hadoop_fs_name,
1285
            "hadoop.job.ugi": hadoop_fs_ugi,
1286 1287 1288
        }
        client = HDFSClient(hadoop_home, configs)
        if not client.is_file(donefile_path):
1289
            return [-1, -1, "", int(time.time())]
1290 1291 1292 1293 1294
        content = client.cat(donefile_path)
        content = content.split("\n")[-1].split("\t")
        last_save_day = int(content[0])
        last_save_pass = int(content[3])
        last_path = content[2]
1295 1296
        xbox_base_key = int(content[1])
        return [last_save_day, last_save_pass, last_path, xbox_base_key]
1297

1298 1299 1300
    def get_online_pass_interval(
        self, days, hours, split_interval, split_per_pass, is_data_hourly_placed
    ):
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        """
        get online pass interval

        Args:
            days(str): days to train
            hours(str): hours to train
            split_interval(int|str): split interval
            split_per_pass(int}str): split per pass
            is_data_hourly_placed(bool): is data hourly placed

        Returns:
            online_pass_interval(list)

        Examples:
            .. code-block:: python

1317 1318 1319 1320 1321 1322 1323 1324 1325
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> online_pass_interval = fleet_util.get_online_pass_interval(
                ...     days="{20190720..20190729}",
                ...     hours="{0..23}",
                ...     split_interval=5,
                ...     split_per_pass=2,
                ...     is_data_hourly_placed=False)
1326 1327 1328 1329 1330 1331

        """
        days = os.popen("echo -n " + days).read().split(" ")
        hours = os.popen("echo -n " + hours).read().split(" ")
        split_interval = int(split_interval)
        split_per_pass = int(split_per_pass)
P
pangengzheng 已提交
1332 1333 1334
        splits_per_day = (
            (int(hours[-1]) - int(hours[0]) + 1) * 60 // split_interval
        )
1335
        pass_per_day = splits_per_day // split_per_pass
1336 1337 1338 1339 1340 1341
        left_train_hour = int(hours[0])
        right_train_hour = int(hours[-1])

        start = 0
        split_path = []
        for i in range(splits_per_day):
1342
            h = start // 60
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
            m = start % 60
            if h < left_train_hour or h > right_train_hour:
                start += split_interval
                continue
            if is_data_hourly_placed:
                split_path.append("%02d" % h)
            else:
                split_path.append("%02d%02d" % (h, m))
            start += split_interval

        start = 0
        online_pass_interval = []
        for i in range(pass_per_day):
            online_pass_interval.append([])
            for j in range(start, start + split_per_pass):
                online_pass_interval[i].append(split_path[j])
            start += split_per_pass

        return online_pass_interval

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    def get_global_metrics(
        self,
        scope=fluid.global_scope(),
        stat_pos_name="_generated_var_2",
        stat_neg_name="_generated_var_3",
        sqrerr_name="sqrerr",
        abserr_name="abserr",
        prob_name="prob",
        q_name="q",
        pos_ins_num_name="pos",
        total_ins_num_name="total",
    ):
1375
        r"""
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        get global metrics, including auc, bucket_error, mae, rmse,
        actual_ctr, predicted_ctr, copc, mean_predict_qvalue, total_ins_num.

        Args:
            scope(Scope): Scope object, default is fluid.global_scope()
            stat_pos_name(str): name of auc pos bucket Variable
            stat_neg_name(str): name of auc neg bucket Variable
            sqrerr_name(str): name of sqrerr Variable
            abserr_name(str): name of abserr Variable
            prob_name(str): name of prob Variable
            q_name(str): name of q Variable
            pos_ins_num_name(str): name of pos ins num Variable
            total_ins_num_name(str): name of total ins num Variable

        Returns:
            [auc, bucket_error, mae, rmse, actual_ctr, predicted_ctr, copc,
             mean_predict_qvalue, total_ins_num]

        Examples:
            .. code-block:: python

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> # doctest: +SKIP('dependency on custom variables')
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> metric_list = fleet_util.get_global_metrics(myscope,
                ...                                             stat_pos.name,
                ...                                             stat_neg.name,
                ...                                             local_sqrerr.name,
                ...                                             local_abserr.name,
                ...                                             local_prob.name,
                ...                                             local_q.name,
                ...                                             local_pos_ins.name,
                ...                                             local_total_ins.name)

                >>> # below is part of example model
                >>> label = paddle.static.data(name="click", shape=[-1, 1],\
                ...     dtype="int64", lod_level=0)
                >>> emb = my_slot_net(slots, label) # emb can be fc layer of size 1
                >>> similarity_norm = fluid.layers.sigmoid(paddle.clip(\
                ...     emb, min=-15.0, max=15.0), name="similarity_norm")\
                >>> binary_predict = fluid.layers.concat(input=[\
                ...     paddle.subtract(\
                ...         fluid.layers.ceil(similarity_norm), similarity_norm),\
                ...     similarity_norm], axis=1)
                >>> auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, \
                ...     stat_neg] = paddle.static.auc(input=binary_predict,\
                ...                                  label=label, curve='ROC',\
                ...                                  num_thresholds=4096)
                >>> local_sqrerr, local_abserr, local_prob, local_q, local_pos_ins,\
                ...     local_total_ins = paddle.static.ctr_metric_bundle(\
                ...         similarity_norm, label)
1428 1429

        """
1430 1431 1432 1433
        if (
            scope.find_var(stat_pos_name) is None
            or scope.find_var(stat_neg_name) is None
        ):
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
            self.rank0_print("not found auc bucket")
            return [None] * 9
        elif scope.find_var(sqrerr_name) is None:
            self.rank0_print("not found sqrerr_name=%s" % sqrerr_name)
            return [None] * 9
        elif scope.find_var(abserr_name) is None:
            self.rank0_print("not found abserr_name=%s" % abserr_name)
            return [None] * 9
        elif scope.find_var(prob_name) is None:
            self.rank0_print("not found prob_name=%s" % prob_name)
            return [None] * 9
        elif scope.find_var(q_name) is None:
            self.rank0_print("not found q_name=%s" % q_name)
            return [None] * 9
        elif scope.find_var(pos_ins_num_name) is None:
            self.rank0_print("not found pos_ins_num_name=%s" % pos_ins_num_name)
            return [None] * 9
        elif scope.find_var(total_ins_num_name) is None:
1452 1453 1454
            self.rank0_print(
                "not found total_ins_num_name=%s" % total_ins_num_name
            )
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            return [None] * 9

        # barrier worker to ensure all workers finished training
        fleet._role_maker._barrier_worker()

        # get auc
        auc = self.get_global_auc(scope, stat_pos_name, stat_neg_name)
        pos = np.array(scope.find_var(stat_pos_name).get_tensor())
        # auc pos bucket shape
        old_pos_shape = np.array(pos.shape)
        # reshape to one dim
        pos = pos.reshape(-1)
        global_pos = np.copy(pos) * 0
        # mpi allreduce
X
xujiaqi01 已提交
1469
        fleet._role_maker._all_reduce(pos, global_pos)
1470 1471 1472 1473 1474 1475 1476
        # reshape to its original shape
        global_pos = global_pos.reshape(old_pos_shape)
        # auc neg bucket
        neg = np.array(scope.find_var(stat_neg_name).get_tensor())
        old_neg_shape = np.array(neg.shape)
        neg = neg.reshape(-1)
        global_neg = np.copy(neg) * 0
X
xujiaqi01 已提交
1477
        fleet._role_maker._all_reduce(neg, global_neg)
1478 1479 1480 1481 1482 1483 1484 1485 1486
        global_neg = global_neg.reshape(old_neg_shape)

        num_bucket = len(global_pos[0])

        def get_metric(name):
            metric = np.array(scope.find_var(name).get_tensor())
            old_metric_shape = np.array(metric.shape)
            metric = metric.reshape(-1)
            global_metric = np.copy(metric) * 0
X
xujiaqi01 已提交
1487
            fleet._role_maker._all_reduce(metric, global_metric)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
            global_metric = global_metric.reshape(old_metric_shape)
            return global_metric[0]

        global_sqrerr = get_metric(sqrerr_name)
        global_abserr = get_metric(abserr_name)
        global_prob = get_metric(prob_name)
        global_q_value = get_metric(q_name)
        # note: get ins_num from auc bucket is not actual value,
        # so get it from metric op
        pos_ins_num = get_metric(pos_ins_num_name)
        total_ins_num = get_metric(total_ins_num_name)
        neg_ins_num = total_ins_num - pos_ins_num

        mae = global_abserr / total_ins_num
        rmse = math.sqrt(global_sqrerr / total_ins_num)
1503
        return_actual_ctr = pos_ins_num / total_ins_num
1504 1505 1506 1507
        predicted_ctr = global_prob / total_ins_num
        mean_predict_qvalue = global_q_value / total_ins_num
        copc = 0.0
        if abs(predicted_ctr > 1e-6):
1508
            copc = return_actual_ctr / predicted_ctr
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

        # calculate bucket error
        last_ctr = -1.0
        impression_sum = 0.0
        ctr_sum = 0.0
        click_sum = 0.0
        error_sum = 0.0
        error_count = 0.0
        click = 0.0
        show = 0.0
        ctr = 0.0
        adjust_ctr = 0.0
        relative_error = 0.0
        actual_ctr = 0.0
        relative_ctr_error = 0.0
        k_max_span = 0.01
        k_relative_error_bound = 0.05
1526
        for i in range(num_bucket):
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
            click = global_pos[0][i]
            show = global_pos[0][i] + global_neg[0][i]
            ctr = float(i) / num_bucket
            if abs(ctr - last_ctr) > k_max_span:
                last_ctr = ctr
                impression_sum = 0.0
                ctr_sum = 0.0
                click_sum = 0.0
            impression_sum += show
            ctr_sum += ctr * show
            click_sum += click
            if impression_sum == 0:
                continue
            adjust_ctr = ctr_sum / impression_sum
            if adjust_ctr == 0:
                continue
1543 1544 1545
            relative_error = math.sqrt(
                (1 - adjust_ctr) / (adjust_ctr * impression_sum)
            )
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
            if relative_error < k_relative_error_bound:
                actual_ctr = click_sum / impression_sum
                relative_ctr_error = abs(actual_ctr / adjust_ctr - 1)
                error_sum += relative_ctr_error * impression_sum
                error_count += impression_sum
                last_ctr = -1

        bucket_error = error_sum / error_count if error_count > 0 else 0.0

        return [
1556 1557 1558 1559 1560 1561 1562 1563 1564
            auc,
            bucket_error,
            mae,
            rmse,
            return_actual_ctr,
            predicted_ctr,
            copc,
            mean_predict_qvalue,
            int(total_ins_num),
1565 1566
        ]

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    def print_global_metrics(
        self,
        scope=fluid.global_scope(),
        stat_pos_name="_generated_var_2",
        stat_neg_name="_generated_var_3",
        sqrerr_name="sqrerr",
        abserr_name="abserr",
        prob_name="prob",
        q_name="q",
        pos_ins_num_name="pos",
        total_ins_num_name="total",
        print_prefix="",
    ):
1580
        r"""
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        print global metrics, including auc, bucket_error, mae, rmse,
        actual_ctr, predicted_ctr, copc, mean_predict_qvalue, total_ins_num.

        Args:
            scope(Scope): Scope object, default is fluid.global_scope()
            stat_pos_name(str): name of auc pos bucket Variable
            stat_neg_name(str): name of auc neg bucket Variable
            sqrerr_name(str): name of sqrerr Variable
            abserr_name(str): name of abserr Variable
            prob_name(str): name of prob Variable
            q_name(str): name of q Variable
            pos_ins_num_name(str): name of pos ins num Variable
            total_ins_num_name(str): name of total ins num Variable
            print_prefix(str): print prefix

        Examples:
            .. code-block:: python

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> # doctest: +SKIP('dependency on custom variables')
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> fleet_util.print_global_metrics(myscope,
                ...                                 stat_pos.name,
                ...                                 stat_neg.name,
                ...                                 local_sqrerr.name,
                ...                                 local_abserr.name,
                ...                                 local_prob.name,
                ...                                 local_q.name,
                ...                                 local_pos_ins.name,
                ...                                 local_total_ins.name)

                >>> # below is part of model
                >>> label = paddle.static.data(name="click", shape=[-1, 1],\
                ...     dtype="int64", lod_level=0)
                >>> emb = my_slot_net(slots, label) # emb can be fc layer of size 1
                >>> similarity_norm = fluid.layers.sigmoid(paddle.clip(\
                ...     emb, min=-15.0, max=15.0), name="similarity_norm")\
                >>> binary_predict = fluid.layers.concat(input=[\
                ...     paddle.subtract(\
                ...         fluid.layers.ceil(similarity_norm), similarity_norm),\
                ...     similarity_norm], axis=1)
                >>> auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, \
                ...     stat_neg] = paddle.static.auc(input=binary_predict,\
                ...                                  label=label, curve='ROC',\
                ...                                  num_thresholds=4096)
                >>> local_sqrerr, local_abserr, local_prob, local_q, local_pos_ins, \
                ...     local_total_ins = paddle.static.ctr_metric_bundle(\
                ...         similarity_norm, label)
1630 1631

        """
1632 1633 1634 1635
        if (
            scope.find_var(stat_pos_name) is None
            or scope.find_var(stat_neg_name) is None
        ):
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
            self.rank0_print("not found auc bucket")
            return
        elif scope.find_var(sqrerr_name) is None:
            self.rank0_print("not found sqrerr_name=%s" % sqrerr_name)
            return
        elif scope.find_var(abserr_name) is None:
            self.rank0_print("not found abserr_name=%s" % abserr_name)
            return
        elif scope.find_var(prob_name) is None:
            self.rank0_print("not found prob_name=%s" % prob_name)
            return
        elif scope.find_var(q_name) is None:
            self.rank0_print("not found q_name=%s" % q_name)
            return
        elif scope.find_var(pos_ins_num_name) is None:
            self.rank0_print("not found pos_ins_num_name=%s" % pos_ins_num_name)
            return
        elif scope.find_var(total_ins_num_name) is None:
1654 1655 1656
            self.rank0_print(
                "not found total_ins_num_name=%s" % total_ins_num_name
            )
1657 1658
            return

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
        (
            auc,
            bucket_error,
            mae,
            rmse,
            actual_ctr,
            predicted_ctr,
            copc,
            mean_predict_qvalue,
            total_ins_num,
        ) = self.get_global_metrics(
            scope,
            stat_pos_name,
            stat_neg_name,
            sqrerr_name,
            abserr_name,
            prob_name,
            q_name,
            pos_ins_num_name,
            total_ins_num_name,
        )
1680
        self.rank0_print(
1681 1682 1683
            "{} global AUC={:.6f} BUCKET_ERROR={:.6f} MAE={:.6f} "
            "RMSE={:.6f} Actural_CTR={:.6f} Predicted_CTR={:.6f} "
            "COPC={:.6f} MEAN Q_VALUE={:.6f} Ins number={}".format(
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
                print_prefix,
                auc,
                bucket_error,
                mae,
                rmse,
                actual_ctr,
                predicted_ctr,
                copc,
                mean_predict_qvalue,
                total_ins_num,
            )
        )
1696 1697 1698 1699

    def program_type_trans(self, prog_dir, prog_fn, is_text):
        return utils.program_type_trans(prog_dir, prog_fn, is_text)

meteor135's avatar
meteor135 已提交
1700 1701 1702
    def load_program(self, model_filename, is_text):
        return utils.load_program(model_filename, is_text)

1703 1704 1705
    def draw_from_program_file(
        self, model_filename, is_text, output_dir, output_filename
    ):
1706
        """draw program from file"""
meteor135's avatar
meteor135 已提交
1707
        program = self.load_program(model_filename, is_text)
1708 1709 1710 1711 1712 1713 1714
        utils.graphviz(program.global_block(), output_dir, output_filename)

    def draw_from_program(self, program, output_dir, output_name):
        """draw Program"""
        utils.graphviz(program.global_block(), output_dir, output_name)

    def check_two_programs(self, config):
meteor135's avatar
meteor135 已提交
1715
        train_prog = self.load_program(
1716 1717
            config.train_prog_path, config.is_text_train_program
        )
meteor135's avatar
meteor135 已提交
1718
        pruned_prog = self.load_program(
1719 1720
            config.pruned_prog_path, config.is_text_pruned_program
        )
1721 1722
        if config.draw:
            pruned_dir = os.path.dirname(config.pruned_prog_path)
1723 1724 1725
            self.draw_from_program(
                pruned_prog, pruned_dir, config.draw_out_name
            )
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
        res = utils.check_pruned_program_vars(train_prog, pruned_prog)
        if res:
            _logger.info("check_programs succeed.")
        else:
            _logger.info(
                "check_programs failed. pruned program and train program not match!"
            )
        return res

    def check_vars_and_dump(self, config):
        _logger.info("start check_vars_and_dump.")
        results = utils.check_saved_vars_try_dump(
1738 1739 1740 1741 1742 1743 1744 1745
            config.dump_model_dir,
            config.dump_program_filename,
            config.is_text_dump_program,
            config.feed_config,
            config.fetch_config,
            config.batch_size,
            config.save_params_filename,
        )
1746 1747 1748 1749 1750
        _logger.info("check_vars_and_dump succeed.")
        return results

    def parse_program_proto(self, prog_path, is_text, output_dir):
        """
1751 1752
        Parse program.proto into a more readable format.
        This function will generate three files:
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
        output_dir/vars_all.log,
        output_dir/vars_persistable.log,
        output_dir/ops.log.

        Args:
            prog_path(str): proto file path to be parsed.
            is_text(bool): proto file is human-readale format or not(binary).
            output_dir(str): output dir.

        Examples:
            .. code-block:: python

1765 1766 1767 1768 1769 1770 1771
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import FleetUtil
                >>> fleet_util = FleetUtil()
                >>> program_path = "./program.pbtxt"
                >>> is_text = True
                >>> output_dir = "/tmp/"
                >>> fleet_util.parse_program_proto(program_path, is_text, output_dir)
1772
        """
meteor135's avatar
meteor135 已提交
1773
        program = self.load_program(prog_path, is_text)
1774
        utils.parse_program(program, output_dir)
T
Thunderbrook 已提交
1775

1776 1777 1778 1779 1780 1781 1782 1783

class GPUPSUtil(FleetUtil):
    """
    GPUPSUtil provides some common functions for users' convenience.

    Examples:
        .. code-block:: python

1784 1785 1786 1787
            >>> # doctest: +REQUIRES(env:DISTRIBUTED)
            >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
            >>> fleet_util = GPUPSUtil()
            >>> fleet_util.rank0_print("my log")
1788 1789 1790
    """

    def __init__(self, fs_client=None):
1791
        super().__init__("pslib")
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
        self._afs = fs_client
        # self._afs = fs_client._fs

    def init(self, fs_name, fs_user, fs_passwd, fs_conf):
        r"""
        init for fs config

        Args:
            fs_name(str): fs name
            fs_user(str): fs user
            fs_passwd(str): fs password
            fs_conf(str): fs and afs conf path

        Returns:
            None

        Examples:
            .. code-block:: python

1811 1812 1813 1814
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
                >>> fleet_util = GPUPSUtil()
                >>> fleet_util.init(20190722, 88, 88, "./afs.conf")
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
        """
        self._afs.init(fs_name, fs_user, fs_passwd, fs_conf)

    def set_fsclient(self, fs_client):
        r"""
        set fs_client for fs config

        Args:
            fs_client(AFSClient): fs_client object

        Returns:
            None

        Examples:
            .. code-block:: python

1831 1832 1833 1834 1835 1836
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
                >>> from paddle.distributed.fleet.utils.fs import AFSClient
                >>> hdfs_client = AFSClient()
                >>> fleet_util = GPUPSUtil()
                >>> fleet_util.set_fsclient(hdfs_client)
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        """
        self._afs = fs_client

    def get_last_save_xbox_base(self, output_path):
        r"""
        get last saved base xbox info from xbox_base_done.txt

        Args:
            output_path(str): output path

        Returns:
            [last_save_day, last_path, xbox_base_key]
            last_save_day(int): day of saved model
            last_path(str): model path
            xbox_base_key(int): xbox key

        Examples:
            .. code-block:: python

1856 1857 1858 1859 1860 1861 1862 1863
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
                >>> from paddle.distributed.fleet.utils.fs import AFSClient
                >>> hdfs_client = AFSClient()
                >>> fleet_util = GPUPSUtil()
                >>> fleet_util.set_fsclient(hdfs_client)
                >>> last_save_day, last_path, xbox_base_key = \
                ...     fleet_util.get_last_save_xbox_base("hdfs:/my/path")
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

        """
        donefile_path = output_path + "/xbox_base_done.txt"

        if not self._afs.is_file(donefile_path):
            return [-1, -1, int(time.time())]
        self._afs.download(donefile_path, "./xbox_base_done.txt")
        # pre_content = self._afs.cat(donefile_path)
        pre_content = ""
        with open("xbox_base_done.txt", "r") as f:
            pre_content = f.read()
        pre_content = pre_content.strip()
        last_dict = json.loads(pre_content.split("\n")[-1])
        last_day = int(last_dict["input"].split("/")[-3])
        last_path = "/".join(last_dict["input"].split("/")[:-1])
        xbox_base_key = int(last_dict["key"])
        return [last_day, last_path, xbox_base_key]

    def get_last_save_xbox(self, output_path):
        r"""
        get last saved xbox info from xbox_patch_done.txt

        Args:
            output_path(str): output path

        Returns:
            [last_save_day, last_save_pass, last_path, xbox_base_key]
            last_save_day(int): day of saved model
            last_save_pass(int): pass id of saved
            last_path(str): model path
            xbox_base_key(int): xbox key

        Examples:
            .. code-block:: python

1899 1900 1901 1902 1903 1904 1905 1906
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
                >>> from paddle.distributed.fleet.utils.fs import AFSClient
                >>> hdfs_client = AFSClient()
                >>> fleet_util = GPUPSUtil()
                >>> fleet_util.set_fsclient(hdfs_client)
                >>> last_save_day, last_save_pass, last_path, xbox_base_key = \
                ...     fleet_util.get_last_save_xbox("hdfs:/my/path")
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

        """
        donefile_path = output_path + "/xbox_patch_done.txt"

        if not self._afs.is_file(donefile_path):
            return [-1, -1, "", int(time.time())]
        self._afs.download(donefile_path, "xbox_patch_done.txt")
        pre_content = ""
        with open("xbox_patch_done.txt", "r") as f:
            pre_content = f.read()
        pre_content = pre_content.strip()
        last_dict = json.loads(pre_content.split("\n")[-1])
        last_day = int(last_dict["input"].split("/")[-3])
        last_pass = int(last_dict["input"].split("/")[-2].split("-")[-1])
        last_path = "/".join(last_dict["input"].split("/")[:-1])
        xbox_base_key = int(last_dict["key"])
        os.remove("xbox_patch_done.txt")
        return [last_day, last_pass, last_path, xbox_base_key]

    def get_last_save_model(self, output_path):
        r"""
        get last saved model info from donefile.txt

        Args:
            output_path(str): output path

        Returns:
            [last_save_day, last_save_pass, last_path, xbox_base_key]
            last_save_day(int): day of saved model
            last_save_pass(int): pass id of saved
            last_path(str): model path
            xbox_base_key(int): xbox key

        Examples:
            .. code-block:: python

1943 1944 1945 1946 1947 1948 1949 1950
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
                >>> from paddle.distributed.fleet.utils.fs import AFSClient
                >>> hdfs_client = AFSClient()
                >>> fleet_util = GPUPSUtil()
                >>> fleet_util.set_fsclient(hdfs_client)
                >>> last_save_day, last_save_pass, last_path, xbox_base_key = \
                ...     fleet_util.get_last_save_model("hdfs:/my/path")
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

        """
        last_save_day = -1
        last_save_pass = -1
        last_path = ""
        donefile_path = output_path + "/donefile.txt"
        if not self._afs.is_file(donefile_path):
            return [-1, -1, "", int(time.time())]
        self._afs.download(donefile_path, "./donefile.txt")
        content = ""
        with open("donefile.txt", "r") as f:
            content = f.read()
        content = content.strip().split("\n")[-1].split("\t")
        last_save_day = int(content[0])
        last_save_pass = int(content[3])
        last_path = content[2]
        xbox_base_key = int(content[1])
        os.remove("donefile.txt")
        return [last_save_day, last_save_pass, last_path, xbox_base_key]

1971 1972 1973 1974 1975 1976 1977 1978
    def write_model_donefile(
        self,
        output_path,
        day,
        pass_id,
        xbox_base_key,
        donefile_name="donefile.txt",
    ):
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
        """
        write donefile when save model

        Args:
            output_path(str): output path
            day(str|int): training day
            pass_id(str|int): training pass id
            xbox_base_key(str|int): xbox base key
            donefile_name(str): donefile name, default is "donefile.txt"

        Examples:
            .. code-block:: python

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
                >>> from paddle.distributed.fleet.utils.fs import AFSClient
                >>> hdfs_client = AFSClient()
                >>> fleet_util = GPUPSUtil()
                >>> fleet_util.set_fsclient(hdfs_client)
                >>> fleet_util.write_model_donefile(output_path="hdfs:/my/output",
                ...                                 day=20190723,
                ...                                 pass_id=66,
                ...                                 xbox_base_key=int(time.time()))
2002 2003 2004 2005 2006 2007 2008

        """
        day = str(day)
        pass_id = str(pass_id)
        xbox_base_key = int(xbox_base_key)

        if pass_id != "-1":
2009
            suffix_name = f"/{day}/{pass_id}/"
2010 2011 2012 2013 2014 2015 2016
            model_path = output_path.rstrip("/") + suffix_name
        else:
            suffix_name = "/%s/0/" % day
            model_path = output_path.rstrip("/") + suffix_name

        if fleet.worker_index() == 0:
            donefile_path = output_path + "/" + donefile_name
2017 2018 2019 2020 2021 2022 2023
            content = "%s\t%lu\t%s\t%s\t%d" % (
                day,
                xbox_base_key,
                model_path,
                pass_id,
                0,
            )
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
            if self._afs.is_file(donefile_path):
                self._afs.download(donefile_path, donefile_name)
                pre_content = ""
                with open(donefile_name, "r") as f:
                    pre_content = f.read()
                pre_content_list = pre_content.strip().split("\n")
                day_list = [i.split("\t")[0] for i in pre_content_list]
                pass_list = [i.split("\t")[3] for i in pre_content_list]
                os.remove(donefile_name)
                exist = False
                for i in range(len(day_list)):
2035 2036 2037
                    if int(day) == int(day_list[i]) and int(pass_id) == int(
                        pass_list[i]
                    ):
2038 2039 2040 2041 2042 2043 2044 2045
                        exist = True
                        break
                if not exist:
                    with open(donefile_name, "w") as f:
                        f.write(pre_content.strip() + "\n")
                        f.write(content + "\n")
                    self._afs.delete(donefile_path)
                    self._afs.upload(donefile_name, donefile_path)
2046
                    self.rank0_error(
2047
                        f"write {day}/{pass_id} {donefile_name} succeed"
2048
                    )
2049
                else:
2050
                    self.rank0_error(
2051 2052
                        "not write {} because {}/{} already "
                        "exists".format(donefile_name, day, pass_id)
2053
                    )
2054 2055 2056 2057
            else:
                with open(donefile_name, "w") as f:
                    f.write(content + "\n")
                self._afs.upload(donefile_name, donefile_path)
2058
                self.rank0_error(
2059
                    f"write {day}/{pass_id} {donefile_name} succeed"
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
                )

    def write_xbox_donefile(
        self,
        output_path,
        day,
        pass_id,
        xbox_base_key,
        data_path,
        hadoop_fs_name,
        hadoop_fs_ugi,
        monitor_data={},
        hadoop_home="$HADOOP_HOME",
        donefile_name=None,
    ):
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
        """
        write delta donefile or xbox base donefile

        Args:
            output_path(str): output path
            day(str|int): training day of model
            pass_id(str|int): training pass id of model
            xbox_base_key(str|int): xbox base key
            data_path(str|list): training data path
            monitor_data(dict): metrics
            hadoop_home(str): hadoop home, default is "$HADOOP_HOME"
            donefile_name(str): donefile name, default is None"

        Examples:
            .. code-block:: python

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
                >>> from paddle.distributed.fleet.utils.fs import AFSClient
                >>> hdfs_client = AFSClient()
                >>> fleet_util = GPUPSUtil()
                >>> fleet_util.set_fsclient(hdfs_client)
                >>> fleet_util.write_xbox_donefile(
                ...     output_path="hdfs:/my/output/",
                ...     day=20190722,
                ...     pass_id=1,
                ...     xbox_base_key=int(time.time()),
                ...     data_path="hdfs:/my/data/",
                ...     monitor_data={})
2104 2105 2106 2107 2108 2109 2110 2111

        """
        day = str(day)
        pass_id = str(pass_id)
        xbox_base_key = int(xbox_base_key)
        mode = None
        if pass_id != "-1":
            mode = "patch"
2112
            suffix_name = f"/{day}/delta-{pass_id}/"
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
            model_path = output_path.rstrip("/") + suffix_name
            if donefile_name is None:
                donefile_name = "xbox_patch_done.txt"
        else:
            mode = "base"
            suffix_name = "/%s/base/" % day
            model_path = output_path.rstrip("/") + suffix_name
            if donefile_name is None:
                donefile_name = "xbox_base_done.txt"

        if isinstance(data_path, list):
            data_path = ",".join(data_path)
        if fleet.worker_index() == 0:
            donefile_path = output_path + "/" + donefile_name
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
            xbox_str = self._get_xbox_str(
                output_path,
                day,
                model_path,
                xbox_base_key,
                data_path,
                hadoop_fs_name,
                monitor_data={},
                mode=mode,
            )
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

            if self._afs.is_exist(donefile_path):
                self.rank0_info("exist %s succeed" % (donefile_path))
                self._afs.download(donefile_path, donefile_name)
                pre_content = ""
                with open(donefile_name, "r") as f:
                    pre_content = f.read()
                last_dict = json.loads(pre_content.strip().split("\n")[-1])
                last_day = last_dict["input"].split("/")[-3]
                last_pass = last_dict["input"].split("/")[-2].split("-")[-1]

                os.remove(donefile_name)
                self.rank0_info("remove %s succeed" % (donefile_name))
                exist = False
2151 2152 2153 2154 2155
                if (
                    int(day) < int(last_day)
                    or int(day) == int(last_day)
                    and int(pass_id) <= int(last_pass)
                ):
2156 2157 2158 2159 2160 2161 2162
                    exist = True
                if not exist:
                    with open(donefile_name, "w") as f:
                        f.write(pre_content.strip() + "\n")
                        f.write(xbox_str + "\n")
                    self._afs.delete(donefile_path)
                    self._afs.upload(donefile_name, donefile_path)
2163
                    self.rank0_info(
2164
                        f"write {day}/{pass_id} {donefile_name} succeed"
2165
                    )
2166
                else:
2167
                    self.rank0_info(
2168 2169
                        "not write {} because {}/{} already "
                        "exists".format(donefile_name, day, pass_id)
2170
                    )
2171 2172 2173 2174
            else:
                with open(donefile_name, "w") as f:
                    f.write(xbox_str + "\n")
                self._afs.upload(donefile_name, donefile_path)
2175
                self.rank0_error(
2176
                    f"write {day}/{pass_id} {donefile_name} succeed"
2177 2178 2179 2180 2181 2182 2183 2184 2185
                )

    def write_cache_donefile(
        self,
        output_path,
        day,
        pass_id,
        key_num,
        donefile_name="sparse_cache.meta",
2186
        **kwargs,
2187
    ):
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
        """
        write cache donefile

        Args:
            output_path(str): output path
            day(str|int): training day of model
            pass_id(str|int): training pass id of model
            key_num(str|int): save cache return value
            donefile_name(str): donefile name, default is "sparse_cache.meta"
            kwargs(dict): user defined properties
                          file_num(int): cache file num
                          table_id(int): cache table id

        Examples:
            .. code-block:: python

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
                >>> # doctest: +REQUIRES(env:DISTRIBUTED)
                >>> from paddle.incubate.distributed.fleet.fleet_util import GPUPSUtil
                >>> from paddle.distributed.fleet.utils.fs import AFSClient
                >>> hdfs_client = AFSClient()
                >>> fleet_util = GPUPSUtil()
                >>> fleet_util.set_fsclient(hdfs_client)
                >>> fleet_util.write_cache_donefile(
                ...     output_path="hdfs:/my/output/",
                ...     day=20190722,
                ...     pass_id=1,
                ...     key_num=123456)
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

        """
        day = str(day)
        pass_id = str(pass_id)
        key_num = int(key_num)
        file_num = kwargs.get("file_num", 16)
        table_id = kwargs.get("table_id", 0)

        if pass_id != "-1":
            suffix_name = "/%s/delta-%s/%03d_cache" % (day, pass_id, table_id)
            model_path = output_path.rstrip("/") + suffix_name
        else:
            suffix_name = "/%s/base/%03d_cache" % (day, table_id)
            model_path = output_path.rstrip("/") + suffix_name

        if fleet.worker_index() == 0:
            donefile_path = model_path + "/" + donefile_name

            if self._afs.is_file(donefile_path):
2234 2235 2236
                self.rank0_error(
                    "not write because %s already exists" % donefile_path
                )
2237
            else:
2238 2239 2240 2241
                meta_str = "file_prefix:part\npart_num:%s\nkey_num:%d\n" % (
                    file_num,
                    key_num,
                )
2242 2243 2244 2245 2246
                with open(donefile_name, "w") as f:
                    f.write(meta_str)
                self._afs.upload(donefile_name, donefile_path)
                self.rank0_error("write %s succeed" % donefile_path)

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
    def _get_xbox_str(
        self,
        output_path,
        day,
        model_path,
        xbox_base_key,
        data_path,
        hadoop_fs_name,
        monitor_data={},
        mode="patch",
    ):
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
        xbox_dict = collections.OrderedDict()
        if mode == "base":
            xbox_dict["id"] = str(xbox_base_key)
        elif mode == "patch":
            xbox_dict["id"] = str(int(time.time()))
        else:
            print("warning: unknown mode %s, set it to patch" % mode)
            mode = "patch"
            xbox_dict["id"] = str(int(time.time()))
        xbox_dict["key"] = str(xbox_base_key)
        if model_path.startswith("hdfs:") or model_path.startswith("afs:"):
2269
            model_path = model_path[model_path.find(":") + 1 :]
2270 2271 2272 2273 2274 2275 2276 2277 2278
        xbox_dict["input"] = hadoop_fs_name + model_path.rstrip("/") + "/000"
        xbox_dict["record_count"] = "111111"
        xbox_dict["partition_type"] = "2"
        xbox_dict["job_name"] = "default_job_name"
        xbox_dict["ins_tag"] = "feasign"
        xbox_dict["ins_path"] = data_path
        xbox_dict["job_id"] = os.environ.get("PADDLE_JOB_ID", "")
        # currently hard code here, set monitor_data empty string
        xbox_dict["monitor_data"] = ""
2279 2280 2281
        xbox_dict["monitor_path"] = (
            output_path.rstrip("/") + "/monitor/" + day + ".txt"
        )
2282 2283
        xbox_dict["mpi_size"] = str(fleet.worker_num())
        return json.dumps(xbox_dict)