jit_code.cc 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_code.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/platform/cpu_info.h"

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {

using namespace platform::jit;  // NOLINT

T
tensor-tang 已提交
27
bool VXXJitCode::init(int d, int scalar_index) {
28 29
  // It's not necessary to use avx512 since it would slow down the frequency
  // and this kernel is not compute bound.
T
tensor-tang 已提交
30
  return MayIUse(avx) && scalar_index >= 0 && scalar_index <= 2;
31 32
}

T
tensor-tang 已提交
33
void VXXJitCode::generate() {
T
tensor-tang 已提交
34
  // do not need push stack, and do not need save avx512reg if do not use avx512
T
tensor-tang 已提交
35
  int offset = 0;
T
tensor-tang 已提交
36 37 38
  if (with_relu_) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
39 40 41 42 43
  if (scalar_index_ == 1) {
    vbroadcastss(ymm_src1, ptr[param1]);
  } else if (scalar_index_ == 2) {
    vbroadcastss(ymm_src2, ptr[param2]);
  }
44
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
T
tensor-tang 已提交
45 46 47 48 49 50
    if (scalar_index_ != 1) {
      vmovups(ymm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(ymm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
51 52 53 54 55
    if (type_ == operand_type::mul) {
      vmulps(ymm_dst, ymm_src1, ymm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(ymm_dst, ymm_src1, ymm_src2);
    }
T
tensor-tang 已提交
56 57 58
    if (with_relu_) {
      vmaxps(ymm_dst, ymm_zero, ymm_dst);
    }
T
tensor-tang 已提交
59
    vmovups(ptr[param3 + offset], ymm_dst);
60
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
61
  }
62
  int rest = num_ % YMM_FLOAT_BLOCK;
T
tensor-tang 已提交
63
  if (rest >= 4) {
T
tensor-tang 已提交
64 65 66 67 68 69
    if (scalar_index_ != 1) {
      vmovups(xmm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(xmm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
70 71 72 73 74
    if (type_ == operand_type::mul) {
      vmulps(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
75 76 77
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
78 79 80 81 82
    vmovups(ptr[param3 + offset], xmm_dst);
    offset += sizeof(float) * 4;
    rest -= 4;
  }
  if (rest >= 2) {
T
tensor-tang 已提交
83 84 85 86 87 88
    if (scalar_index_ != 1) {
      vmovups(xmm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(xmm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
89 90 91 92 93
    if (type_ == operand_type::mul) {
      vmulps(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddps(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
94 95 96
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
97 98 99 100 101
    vmovq(ptr[param3 + offset], xmm_dst);
    offset += sizeof(float) * 2;
    rest -= 2;
  }
  if (rest > 0) {
T
tensor-tang 已提交
102 103 104 105 106 107
    if (scalar_index_ != 1) {
      vmovups(xmm_src1, ptr[param1 + offset]);
    }
    if (scalar_index_ != 2) {
      vmovups(xmm_src2, ptr[param2 + offset]);
    }
T
tensor-tang 已提交
108 109 110 111 112
    if (type_ == operand_type::mul) {
      vmulss(xmm_dst, xmm_src1, xmm_src2);
    } else if (type_ == operand_type::add) {
      vaddss(xmm_dst, xmm_src1, xmm_src2);
    }
T
tensor-tang 已提交
113 114 115
    if (with_relu_) {
      vmaxps(xmm_dst, xmm_zero, xmm_dst);
    }
T
tensor-tang 已提交
116 117 118 119
    vmovss(ptr[param3 + offset], xmm_dst);
  }
  ret();
}
T
tensor-tang 已提交
120

P
peizhilin 已提交
121 122 123
#ifdef _WIN32
#define ALIGN32
#else
T
tensor-tang 已提交
124
#define ALIGN32 __attribute__((aligned(32)))
P
peizhilin 已提交
125 126
#endif

T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140
#define EXP_HIG 88.3762626647949f
#define EXP_LOW -88.3762626647949f
#define CEPHES_LOG2EF 1.44269504088896341
#define CEPHES_EXP_C1 0.693359375
#define CEPHES_EXP_C2 -2.12194440e-4
#define CEPHES_EXP_P0 1.9875691500E-4
#define CEPHES_EXP_P1 1.3981999507E-3
#define CEPHES_EXP_P2 8.3334519073E-3
#define CEPHES_EXP_P3 4.1665795894E-2
#define CEPHES_EXP_P4 1.6666665459E-1
#define CEPHES_EXP_P5 5.0000001201E-1

#define REPEAT_8TIMES(val) val, val, val, val, val, val, val, val

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#define OFFSET_EXP_ONE 0 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_TWO 1 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_0P5 2 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_HIG 3 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOW 4 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOG2EF 5 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C1 6 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C2 7 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P0 8 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P1 9 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P2 10 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P3 11 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P4 12 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P5 13 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_MAX_INPUT 14 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MAX 15 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MIN 16 * YMM_FLOAT_BLOCK * sizeof(float)
T
tensor-tang 已提交
158 159

static const float exp_float_consts[] ALIGN32 = {
T
tensor-tang 已提交
160
    REPEAT_8TIMES(1.f),
T
tensor-tang 已提交
161
    REPEAT_8TIMES(2.f),
T
tensor-tang 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    REPEAT_8TIMES(0.5f),
    REPEAT_8TIMES(EXP_HIG),
    REPEAT_8TIMES(EXP_LOW),
    REPEAT_8TIMES(CEPHES_LOG2EF),
    REPEAT_8TIMES(CEPHES_EXP_C1),
    REPEAT_8TIMES(CEPHES_EXP_C2),
    REPEAT_8TIMES(CEPHES_EXP_P0),
    REPEAT_8TIMES(CEPHES_EXP_P1),
    REPEAT_8TIMES(CEPHES_EXP_P2),
    REPEAT_8TIMES(CEPHES_EXP_P3),
    REPEAT_8TIMES(CEPHES_EXP_P4),
    REPEAT_8TIMES(CEPHES_EXP_P5),
    REPEAT_8TIMES(EXP_MAX_INPUT),
    REPEAT_8TIMES(SIGMOID_THRESHOLD_MAX),
    REPEAT_8TIMES(SIGMOID_THRESHOLD_MIN)};
T
tensor-tang 已提交
177 178 179 180

static const int exp_int_0x7f[] ALIGN32 = {REPEAT_8TIMES(0x7f)};
static int g_tmp_mem[16] ALIGN32 = {0};

181 182 183 184
bool VActJitCode::init(int d, operand_type type) {
  bool ok = MayIUse(avx);
  if (type == operand_type::relu) {
    return ok;
185 186 187
  } else if (type == operand_type::exp) {
    // exp is slower than mkl when d >= 256
    return ok && d % 8 == 0 && d < 256;
188
  } else {
T
tensor-tang 已提交
189
    // TODO(TJ): support more
190
    return ok && d % 8 == 0;
191
  }
T
tensor-tang 已提交
192 193
}

194 195 196 197 198 199
void VActJitCode::relu_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, ymm_t& ymm_zero) {
  vmaxps(ymm_dst, ymm_zero, ymm_src);
}

void VActJitCode::exp_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                          int fy_idx, int mask_idx, int tmp_idx) {
T
tensor-tang 已提交
200
  assert(ymm_src.getIdx() != ymm_dst.getIdx());  // TODO(TJ): use enfore
201 202 203 204 205 206
  // check all idx can not equal
  ymm_t ymm_fx = ymm_t(fx_idx);
  ymm_t ymm_fy = ymm_t(fy_idx);
  ymm_t ymm_mask = ymm_t(mask_idx);
  ymm_t ymm_tmp = ymm_t(tmp_idx);
  reg64_t reg_ptr_global = rax;
T
tensor-tang 已提交
207
  push(reg_ptr_global);
T
tensor-tang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  // express exp(x) as exp(g + n*log(2))
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
  vmulps(ymm_fx, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
  vaddps(ymm_fx, ymm_fx, ymm_tmp);
  vroundps(ymm_fy, ymm_fx, 0x01);
  // if greater, substract 1
  vcmpgtps(ymm_mask, ymm_fy, ymm_fx);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vandps(ymm_mask, ymm_mask, ymm_tmp);
  vsubps(ymm_fx, ymm_fy, ymm_mask);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C1]);
  vmulps(ymm_fy, ymm_fx, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
T
tensor-tang 已提交
227 228
  ymm_t ymm_z = ymm_t(ymm_mask.getIdx());
  vmulps(ymm_z, ymm_fx, ymm_tmp);
T
tensor-tang 已提交
229 230 231 232 233 234
  vsubps(ymm_src, ymm_src, ymm_fy);
  vsubps(ymm_src, ymm_src, ymm_z);
  vmulps(ymm_z, ymm_src, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
  vmulps(ymm_dst, ymm_src, ymm_tmp);
  for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
235
       i += (YMM_FLOAT_BLOCK * sizeof(float))) {
T
tensor-tang 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    vmovaps(ymm_tmp, ptr[reg_ptr_global + i]);  // P1~P4
    vaddps(ymm_dst, ymm_dst, ymm_tmp);
    vmulps(ymm_dst, ymm_dst, ymm_src);
  }
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmulps(ymm_dst, ymm_dst, ymm_z);
  vaddps(ymm_dst, ymm_dst, ymm_src);
  vmovaps(ymm_tmp, ptr[reg_ptr_global]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  // build 2^n
  ymm_t ymm_int = ymm_fx;
  vcvttps2dq(ymm_int, ymm_fx);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_int_0x7f));
  vmovdqa(ymm_tmp, ptr[reg_ptr_global]);
  if (MayIUse(avx2)) {
    vpaddd(ymm_int, ymm_int, ymm_tmp);
    vpslld(ymm_int, ymm_int, 23);
  } else if (MayIUse(avx)) {
T
tensor-tang 已提交
255 256 257 258 259
    xmm_t xtmp1 = xmm_t(ymm_int.getIdx());
    xmm_t xtmp2 = xmm_t(ymm_tmp.getIdx());
    reg64_t reg_ptr_tmp = reg_ptr_global;
    mov(reg_ptr_tmp, reinterpret_cast<size_t>(g_tmp_mem));
    vmovdqa(ptr[reg_ptr_tmp], ymm_int);
260
    vmovdqa(ptr[reg_ptr_tmp + YMM_FLOAT_BLOCK * sizeof(float)], ymm_tmp);
T
tensor-tang 已提交
261 262
    vpaddd(xtmp1, xtmp1, xtmp2);
    vpslld(xtmp1, xtmp1, 23);
T
tensor-tang 已提交
263
    vmovdqa(ptr[reg_ptr_tmp], xtmp1);
T
tensor-tang 已提交
264
    // next 128bits
T
tensor-tang 已提交
265
    vmovdqa(xtmp1, ptr[reg_ptr_tmp + 4 /*xmm float block*/ * sizeof(float)]);
T
tensor-tang 已提交
266
    vmovdqa(xtmp2,
T
tensor-tang 已提交
267
            ptr[reg_ptr_tmp +
268
                (YMM_FLOAT_BLOCK + 4 /*xmm float block*/) * sizeof(float)]);
T
tensor-tang 已提交
269 270
    vpaddd(xtmp1, xtmp1, xtmp2);
    vpslld(xtmp1, xtmp1, 23);
T
tensor-tang 已提交
271
    vmovdqa(ptr[reg_ptr_tmp + 4 /*xmm float block*/ * sizeof(float)], xtmp1);
T
tensor-tang 已提交
272
    // load out
T
tensor-tang 已提交
273
    vmovdqa(ymm_int, ptr[reg_ptr_tmp]);
T
tensor-tang 已提交
274 275
  }
  vmulps(ymm_dst, ymm_dst, ymm_int);
T
tensor-tang 已提交
276 277 278
  pop(reg_ptr_global);
}

279 280 281 282
void VActJitCode::sigmoid_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                              int fy_idx, int mask_idx, int tmp_idx) {
  // y = 1 / (1 + e^-x)
  ymm_t ymm_tmp = ymm_t(tmp_idx);
T
tensor-tang 已提交
283 284 285 286 287 288 289 290 291
  reg64_t reg_ptr_global = rax;
  push(reg_ptr_global);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MAX]);
  vminps(ymm_src, ymm_src, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MIN]);
  vmaxps(ymm_src, ymm_src, ymm_tmp);
  vxorps(ymm_tmp, ymm_tmp, ymm_tmp);
  vsubps(ymm_src, ymm_tmp, ymm_src);
292
  exp_ymm(ymm_dst, ymm_src, fx_idx, fy_idx, mask_idx, tmp_idx);
T
tensor-tang 已提交
293 294 295 296 297 298
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vdivps(ymm_dst, ymm_tmp, ymm_dst);
  pop(reg_ptr_global);
}

299 300
void VActJitCode::tanh_ymm(ymm_t& ymm_dst, ymm_t& ymm_src, int fx_idx,
                           int fy_idx, int mask_idx, int tmp_idx) {
T
tensor-tang 已提交
301
  // y = 2 / (1 + e^(-2x)) - 1
302 303
  ymm_t ymm_tmp = ymm_t(tmp_idx);
  ymm_t ymm_zero = ymm_t(mask_idx);
T
tensor-tang 已提交
304 305 306 307 308 309 310
  reg64_t reg_ptr_global = rax;
  push(reg_ptr_global);
  mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
  vxorps(ymm_zero, ymm_zero, ymm_zero);
  vsubps(ymm_tmp, ymm_zero, ymm_tmp);
  vmulps(ymm_src, ymm_src, ymm_tmp);
311
  exp_ymm(ymm_dst, ymm_src, fx_idx, fy_idx, mask_idx, tmp_idx);
T
tensor-tang 已提交
312 313 314 315 316 317 318 319 320
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vaddps(ymm_dst, ymm_dst, ymm_tmp);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
  vdivps(ymm_dst, ymm_tmp, ymm_dst);
  vmovaps(ymm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
  vsubps(ymm_dst, ymm_dst, ymm_tmp);
  pop(reg_ptr_global);
}

321 322 323 324 325 326
void VActJitCode::generate() {
  xmm_t xmm_zero = xmm_t(2);
  ymm_t ymm_zero = ymm_t(2);
  if (type_ == operand_type::relu) {
    vxorps(ymm_zero, ymm_zero, ymm_zero);
  }
T
tensor-tang 已提交
327
  int offset = 0;
328
  for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    vmovups(ymm_src, ptr[param1 + offset]);
    switch (type_) {
      case operand_type::relu:
        relu_ymm(ymm_dst, ymm_src, ymm_zero);
        break;
      case operand_type::exp:
        exp_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::sigmoid:
        sigmoid_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::tanh:
        tanh_ymm(ymm_dst, ymm_src, 2, 3, 4, 5);
        break;
      case operand_type::identity:
        break;
      default:
        break;
    }
    vmovups(ptr[param2 + offset], ymm_dst);
349
    offset += sizeof(float) * YMM_FLOAT_BLOCK;
350 351 352 353 354 355
  }
  if (type_ != operand_type::relu) {
    // TODO(TJ): remove me
    ret();
    return;
  }
356
  int rest = num_ % YMM_FLOAT_BLOCK;
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  if (rest >= 4) {
    vmovups(xmm_src, ptr[param1 + offset]);
    vmaxps(xmm_dst, xmm_zero, xmm_src);
    vmovups(ptr[param2 + offset], xmm_dst);
    offset += sizeof(float) * 4;
    rest -= 4;
  }
  if (rest >= 2) {
    vmovups(xmm_src, ptr[param1 + offset]);
    vmaxps(xmm_dst, xmm_zero, xmm_src);
    vmovq(ptr[param2 + offset], xmm_dst);
    offset += sizeof(float) * 2;
    rest -= 2;
  }
  if (rest > 0) {
    vmovups(xmm_src, ptr[param1 + offset]);
    vmaxps(xmm_dst, xmm_zero, xmm_src);
    vmovss(ptr[param2 + offset], xmm_dst);
  }
T
tensor-tang 已提交
376 377 378
  ret();
}

379 380 381 382 383
}  // namespace gen
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle