test_if_else_op.py 7.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
18
import paddle.fluid.layers as layers
19
from paddle.fluid.framework import Program, program_guard
20 21 22
from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import MomentumOptimizer
import paddle.fluid.core as core
23
import paddle.fluid as fluid
24 25 26 27
from paddle.fluid.layers.control_flow import split_lod_tensor
from paddle.fluid.layers.control_flow import merge_lod_tensor
from paddle.fluid.layers.control_flow import ConditionalBlock

Y
Yu Yang 已提交
28 29 30 31 32 33
import unittest
import numpy as np


class TestMNISTIfElseOp(unittest.TestCase):
    def test_raw_api(self):
34 35 36 37
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
38

39
            label = layers.data(name='y', shape=[1], dtype='int64')
Y
Yu Yang 已提交
40

41
            limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
42
            cond = layers.less_than(x=label, y=limit)
43
            true_image, false_image = split_lod_tensor(input=image, mask=cond)
Y
Yu Yang 已提交
44

45
            true_out = layers.create_tensor(dtype='float32')
46
            true_cond = ConditionalBlock([cond])
Y
Yu Yang 已提交
47

48 49 50 51
            with true_cond.block():
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=true_out)
Y
Yu Yang 已提交
52

53
            false_out = layers.create_tensor(dtype='float32')
54
            false_cond = ConditionalBlock([cond])
Y
Yu Yang 已提交
55

56 57 58 59
            with false_cond.block():
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=false_out)
Y
Yu Yang 已提交
60

61
            prob = merge_lod_tensor(
62 63
                in_true=true_out, in_false=false_out, mask=cond, x=image)
            loss = layers.cross_entropy(input=prob, label=label)
Y
Yu Yang 已提交
64
            avg_loss = layers.mean(loss)
Y
Yu Yang 已提交
65

66 67
            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
Y
Yu Yang 已提交
68 69 70 71

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
72
            batch_size=10)
Y
Yu Yang 已提交
73 74 75 76

        place = core.CPUPlace()
        exe = Executor(place)

77
        exe.run(startup_prog)
Y
Yu Yang 已提交
78 79 80
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
81 82
                x_data = np.array([x[0] for x in data]).astype("float32")
                y_data = np.array([x[1] for x in data]).astype("int64")
Y
Yu Yang 已提交
83 84
                y_data = np.expand_dims(y_data, axis=1)

85
                outs = exe.run(prog,
D
dzhwinter 已提交
86 87 88
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
89
                print(outs[0])
Y
Yu Yang 已提交
90 91 92 93 94
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)

    def test_ifelse(self):
95 96 97 98 99 100 101
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

102
            limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
            cond = layers.less_than(x=label, y=limit)
            ie = layers.IfElse(cond)

            with ie.true_block():
                true_image = ie.input(image)
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            prob = ie()
            loss = layers.cross_entropy(input=prob[0], label=label)
Y
Yu Yang 已提交
120
            avg_loss = layers.mean(loss)
121 122 123

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
Y
Yu Yang 已提交
124 125 126 127 128 129 130 131
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

132
        exe.run(startup_prog)
Y
Yu Yang 已提交
133 134 135
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
136 137
                x_data = np.array([x[0] for x in data]).astype("float32")
                y_data = np.array([x[1] for x in data]).astype("int64")
D
dzhwinter 已提交
138
                y_data = y_data.reshape((y_data.shape[0], 1))
Y
Yu Yang 已提交
139

140
                outs = exe.run(prog,
D
dzhwinter 已提交
141 142 143
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
144
                print(outs[0])
Y
Yu Yang 已提交
145 146 147 148 149
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestIfElse(unittest.TestCase):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = 0.5
        self.data = np.random.rand(25, 1).astype(np.float32)

    def compare_ifelse_op_and_numpy(self, place):
        self.set_test_case()

        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            src = layers.data(name='data', shape=[1], dtype='float32')
            cond = layers.fill_constant(
                [1], dtype='float32', value=self.cond_value)
            ifcond = layers.less_than(x=src, y=cond)
            ie = layers.IfElse(ifcond)
            with ie.true_block():
                true_target = ie.input(src)
                ie.output(true_target)

            with ie.false_block():
                false_target = ie.input(src)
                ie.output(false_target)
            if_out = ie()
            out = layers.reduce_sum(if_out)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            fetch_list = [out]
            o1, = exe.run(fluid.default_main_program(),
                          feed={'data': self.data},
                          fetch_list=[out])
            o2 = np.sum(self.data)
            self.assertTrue(
                np.allclose(
                    o1, o2, atol=1e-8),
                "IfElse result : " + str(o1) + "\n Numpy result :" + str(o2))

    def test_cpu(self):
        self.compare_ifelse_op_and_numpy(fluid.CPUPlace())

    def test_cuda(self):
        if not core.is_compiled_with_cuda():
            return
        self.compare_ifelse_op_and_numpy(fluid.CUDAPlace(0))


class TestIfElseTrueBranch(TestIfElse):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = 10.
        self.data = np.random.rand(25, 1).astype(np.float32)


class TestIfElseFalseBranch(TestIfElse):
    def set_test_case(self):
        # condiction is: self.data < self.cond_value
        self.cond_value = -10.
        self.data = np.random.rand(25, 1).astype(np.float32)


Y
Yu Yang 已提交
212
if __name__ == '__main__':
213
    unittest.main()