elementwise_mul_op.h 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19
#include "paddle/fluid/platform/cpu_info.h"
20

21
#include "paddle/pten/kernels/math_kernel.h"
22

23 24 25
namespace paddle {
namespace operators {

26 27 28 29 30 31 32
class ElementwiseMulOp : public ElementwiseOp {
 public:
  using Tensor = framework::Tensor;
  using ElementwiseOp::ElementwiseOp;

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
33 34
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
35 36

#ifdef PADDLE_WITH_MKLDNN
37
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
38 39 40
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
41 42 43 44
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
45 46 47 48 49 50

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
51 52 53
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
54 55 56 57 58
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
59 60
};

61 62 63 64 65
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
66 67 68
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
69 70 71 72 73 74
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseMulFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseMulFunctor<T>(), z);
  }
75
}
76

77 78 79 80 81 82
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseMul {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
};
83

Q
QI JUN 已提交
84
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
85
class ElementwiseMulKernel : public framework::OpKernel<T> {
86 87
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
88
    auto x_var = ctx.InputVar("X");
89 90 91 92
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
C
chengduo 已提交
93
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
94 95

    framework::Tensor x, *z;
96
    if (x_var->IsType<pten::SelectedRows>()) {
97 98 99 100 101
      PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                        platform::errors::InvalidArgument(
                            "For elementwise_op, if X is Sparse, Y must be "
                            "scalar. But reveived the size of Y = %s.",
                            y->dims().size()));
102 103
      auto& x_sele = x_var->Get<pten::SelectedRows>();
      auto out_sele = ctx.Output<pten::SelectedRows>("Out");
C
chengduo 已提交
104 105 106 107 108
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
109
      z = ctx.Output<pten::SelectedRows>("Out")->mutable_value();
Y
YuanRisheng 已提交
110 111 112 113 114 115 116 117
      z->mutable_data<T>(ctx.GetPlace());
      auto dims_equal = x.dims() == y->dims();
      if (dims_equal) {
        SameDimsElemwiseMul<DeviceContext, T> same_dims_mul;
        same_dims_mul(ctx, &x, y, z);
      } else {
        default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
      }
C
chengduo 已提交
118
    } else if (x_var->IsType<framework::LoDTensor>()) {
Y
YuanRisheng 已提交
119 120 121 122 123 124 125 126 127
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());

      auto& dev_ctx = ctx.device_context<DeviceContext>();
      int axis = ctx.Attr<int>("axis");
      auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
      auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod);
128
      pten::MultiplyRawKernel<T>(
W
Wilber 已提交
129 130 131
          static_cast<const typename framework::ConvertToPtenContext<
              DeviceContext>::TYPE&>(dev_ctx),
          *pt_x.get(), *pt_y.get(), axis, pt_z.get());
C
chengduo 已提交
132
    } else {
133 134 135 136
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
C
chengduo 已提交
137
    }
G
gongweibao 已提交
138 139 140
  }
};
template <typename T>
C
chengduoZH 已提交
141
struct MulGradDX {
C
chengduoZH 已提交
142
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
143 144
};

145 146 147 148 149 150 151
template <typename T>
struct MulGradDX<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> y_conj(y.real, -y.imag);
152 153 154 155
    return dout * y_conj;
  }
};

G
gongweibao 已提交
156
template <typename T>
C
chengduoZH 已提交
157
struct MulGradDY {
C
chengduoZH 已提交
158
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
159
};
C
chengduoZH 已提交
160

161 162 163 164 165 166 167
template <typename T>
struct MulGradDY<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> x_conj(x.real, -x.imag);
168 169 170 171
    return dout * x_conj;
  }
};

172 173 174
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
175 176 177 178
ElementwiseMulGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
179 180 181 182 183
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

184
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
185 186 187
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
188 189 190 191
ElementwiseMulGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy);
192 193
#endif

Q
QI JUN 已提交
194
template <typename DeviceContext, typename T>
195
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
196 197
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
198
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
199 200 201 202 203
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
204
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
205 206
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
207 208

    ElementwiseMulGrad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
G
gongweibao 已提交
209 210
  }
};
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

234 235
    // dx = dout * ddy
    // dy = dout * ddx
236
    // ddout = ddx * y + x * ddy
237 238 239 240 241 242
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
243
    // (5) dx = dout * ddy
244
    if (ddout) {
245 246 247
      int axis = ctx.Attr<int>("axis");
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
      // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
      if (ddout->numel() > ddx->numel()) {
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX<T>(),
            MulGradDY<T>());

        Tensor ddout_tmp;
        ddout_tmp.mutable_data<T>(ddout->dims(), ctx.GetPlace());

        default_elementwise_mul<DeviceContext, T>(ctx, y, &ddx_safe, ddout);
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, x,
                                                  &ddout_tmp);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
      } else {
        // use dx to save memory, other than alloc tmp tensor
        Tensor* ddout_tmp = dx;

        default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
        // NOTE: in the following ElemwiseGradCompute, for the
        // first output tensor is nullptr, the branch to calculate first
        // output tensor will not be activated, DivGradDx function will not
        // be called and can be ignored, the first branch has little effect
        // on running speed.
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
            MulGradDX<T>(), MulGradDY<T>());
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
        default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
      }
284 285 286 287
    }
  }
};

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
template <typename DeviceContext, typename T>
class ElementwiseMulTripleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;
    // get input
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>("DOut");
    auto* ddx = ctx.Input<framework::Tensor>("DDX");
    auto* ddy = ctx.Input<framework::Tensor>("DDY");

    auto* d_dx = ctx.Input<framework::Tensor>("D_DX");
    auto* d_dy = ctx.Input<framework::Tensor>("D_DY");
    auto* d_ddout = ctx.Input<framework::Tensor>("D_DDOut");

    // get output
    auto* out_d_x = ctx.Output<framework::Tensor>("D_X");
    auto* out_d_y = ctx.Output<framework::Tensor>("D_Y");
    auto* out_d_dout = ctx.Output<framework::Tensor>("D_DOut");

    auto* out_d_ddx = ctx.Output<framework::Tensor>("D_DDX");
    auto* out_d_ddy = ctx.Output<framework::Tensor>("D_DDY");

    if (out_d_x) out_d_x->mutable_data<T>(x->dims(), ctx.GetPlace());
    if (out_d_y) out_d_y->mutable_data<T>(y->dims(), ctx.GetPlace());
    if (out_d_dout) out_d_dout->mutable_data<T>(dout->dims(), ctx.GetPlace());
    if (out_d_ddx) out_d_ddx->mutable_data<T>(x->dims(), ctx.GetPlace());
    if (out_d_ddy) out_d_ddy->mutable_data<T>(y->dims(), ctx.GetPlace());

    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

    if (d_ddout) {
      if (out_d_x) {
        // out_d_x = ddy * d_ddout
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, d_ddout,
                                                  out_d_x);
      }
      if (out_d_y) {
        // out_d_y = ddx * d_ddout
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, d_ddout,
                                                  out_d_y);
      }
    }

    if (out_d_dout) {
      // get out_d_dout
      // out_d_dout = ddy * d_dx + d_dy * ddx
      Tensor out_d_dout_tmp;
      out_d_dout_tmp.mutable_data<T>(dout->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, d_dy, &ddx_safe,
                                                out_d_dout);
      default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, d_dx,
                                                &out_d_dout_tmp);
      auto out_d_dout_t = framework::EigenVector<T>::Flatten(*out_d_dout);
      auto out_d_dout_tmp_t =
          framework::EigenVector<T>::Flatten(out_d_dout_tmp);
      out_d_dout_t.device(place) = out_d_dout_t + out_d_dout_tmp_t;
    }

    if (out_d_ddx) {
      // get out_d_ddx
      // out_d_ddx = dout * d_dy + y * d_ddout
      Tensor out_d_ddx_tmp;
      out_d_ddx_tmp.mutable_data<T>(ddx->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, dout, d_dy, out_d_ddx);
      default_elementwise_mul<DeviceContext, T>(ctx, y, d_ddout,
                                                &out_d_ddx_tmp);
      auto out_d_ddx_t = framework::EigenVector<T>::Flatten(*out_d_ddx);
      auto out_d_ddx_tmp_t = framework::EigenVector<T>::Flatten(out_d_ddx_tmp);
      out_d_ddx_t.device(place) = out_d_ddx_t + out_d_ddx_tmp_t;
    }

    if (out_d_ddy) {
      // get out_d_ddy
      // out_d_ddy = dout * d_dx + x * d_ddout
      Tensor out_d_ddy_tmp;
      out_d_ddy_tmp.mutable_data<T>(ddy->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, dout, d_dx, out_d_ddy);
      default_elementwise_mul<DeviceContext, T>(ctx, x, d_ddout,
                                                &out_d_ddy_tmp);
      auto out_d_ddy_t = framework::EigenVector<T>::Flatten(*out_d_ddy);
      auto out_d_ddy_tmp_t = framework::EigenVector<T>::Flatten(out_d_ddy_tmp);
      out_d_ddy_t.device(place) = out_d_ddy_t + out_d_ddy_tmp_t;
    }
  }
};
379 380
}  // namespace operators
}  // namespace paddle